Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 54(4): B1-7, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25967815

RESUMO

Sirius was spotted with the naked eye at broad daylight by looking along the finder of a 1 m telescope on La Palma Observatory at a 2370 m height. Sun elevation was 73°; Sirius was nearly straight under the Sun at 37° elevation. The sky radiance, although not recorded directly, could be determined from the simultaneously obtained high-precision wavelength-dependent sky polarization data near Sirius. This was done by fitting the polarization data with the doubling-adding KNMI (DAK) radiative transfer model, which provided the values of the surface albedo and of the aerosol optical thickness required for determining the absolute sky radiance. Our analysis implies that Sirius, when positioned overhead, can be a daytime naked eye object from sea level even if its culmination occurs at solar noon. It also suggests that the second-brightest star (Canopus), if positioned overhead, could be perceptible even at solar noon.

2.
Appl Opt ; 42(3): 309-17, 2003 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-12570251

RESUMO

Simultaneous two-wavelength polarization and radiance distributions have been obtained for 22 degrees parhelia in four Antarctic ice-crystal swarms that extended to ground level. Samples of crystals that produced these parhelia were collected and replicated. The wavelength dependence of the width of the halo polarization peak agrees with Fraunhofer diffraction theory, indicating that the broadening of the halos is caused primarily by diffraction. However, the observed broadening is much more than predicted from the size distribution of the replicated crystals. From one halo display to the other, the ratio of observed/predicted broadening is erratic, suggesting size-dependent collection efficiency in the sampling. This would imply that, for South Pole conditions, halo polarimetry (or even photometry) is a more reliable method for crystal size determination than actual sampling. It also implies that shapes of the sampled crystals need not necessarily be representative for the shapes of the halo-making crystals in the swarm. Our previous hypothesis [Appl. Opt. 33,4569 (1994)], that a spread of interfacial angles is the dominating cause of halo broadening, has proved untenable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...