Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 12(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37240477

RESUMO

Asthma and nasal polyposis often coexist and are frequently intertwined by tight pathogenic links, mainly consisting of the cellular and molecular pathways underpinning type 2 airway inflammation. The latter is characterized by a structural and functional impairment of the epithelial barrier, associated with the eosinophilic infiltration of both the lower and upper airways, which can be driven by either allergic or non-allergic mechanisms. Type 2 inflammatory changes are predominantly due to the biological actions exerted by interleukins 4 (IL-4), 13 (IL-13), and 5 (IL-5), produced by T helper 2 (Th2) lymphocytes and group 2 innate lymphoid cells (ILC2). In addition to the above cytokines, other proinflammatory mediators involved in the pathobiology of asthma and nasal polyposis include prostaglandin D2 and cysteinyl leukotrienes. Within this context of 'united airway diseases', nasal polyposis encompasses several nosological entities such as chronic rhinosinusitis with nasal polyps (CRSwNP) and aspirin-exacerbated respiratory disease (AERD). Because of the common pathogenic origins of asthma and nasal polyposis, it is not surprising that the more severe forms of both these disorders can be successfully treated by the same biologic drugs, targeting many molecular components (IgE, IL-5 and its receptor, IL-4/IL-13 receptors) of the type 2 inflammatory trait.

2.
Front Immunol ; 11: 603312, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329598

RESUMO

Asthma is a heterogeneous respiratory disease characterized by usually reversible bronchial obstruction, which is clinically expressed by different phenotypes driven by complex pathobiological mechanisms (endotypes). Within this context, during the last years several molecular effectors and signalling pathways have emerged as suitable targets for biological therapies of severe asthma, refractory to standard treatments. Indeed, various therapeutic antibodies currently allow to intercept at different levels the chain of pathogenic events leading to type 2 (T2) airway inflammation. In addition to pro-allergic immunoglobulin E (IgE), that chronologically represents the first molecule against which an anti-asthma monoclonal antibody (omalizumab) was developed, today other targets are successfully exploited by biological treatments of severe asthma. In particular, pro-eosinophilic interleukin 5 (IL-5) can be targeted by mepolizumab or reslizumab, whereas benralizumab is a selective blocker of IL-5 receptor. Moreover, dupilumab behaves as a dual receptor antagonist of pleiotropic interleukins 4 (IL-4) and 13 (IL-13). Besides these drugs that are already available in medical practice, other biologics are under clinical development such as those targeting innate cytokines, also including the alarmin thymic stromal lymphopoietin (TSLP), which plays a key role in the pathogenesis of type 2 asthma. Therefore, ongoing and future biological therapies are significantly changing the global scenario of severe asthma management. These new therapeutic options make it possible to implement phenotype/endotype-specific treatments, that are delineating personalized approaches precisely addressing the individual traits of asthma pathobiology. Such tailored strategies are thus allowing to successfully target the immune-inflammatory responses underlying uncontrolled T2-high asthma.


Assuntos
Antiasmáticos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Asma/tratamento farmacológico , Produtos Biológicos/uso terapêutico , Pulmão/efeitos dos fármacos , Animais , Antiasmáticos/efeitos adversos , Anticorpos Monoclonais/efeitos adversos , Asma/imunologia , Asma/metabolismo , Asma/fisiopatologia , Produtos Biológicos/efeitos adversos , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Terapia de Alvo Molecular , Índice de Gravidade de Doença , Resultado do Tratamento
3.
Ther Adv Respir Dis ; 14: 1753466620933508, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32539627

RESUMO

The lung is a key target of the cytokine storm that can be triggered by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for the widespread clinical syndrome known as coronavirus disease 2019 (COVID-19). Indeed, in some patients, SARS-CoV-2 promotes a dysfunctional immune response that dysregulates the cytokine secretory pattern. Hypercytokinemia underlies the hyperinflammatory state leading to injury of alveolar epithelial cells and vascular endothelial cells, as well as to lung infiltration sustained by neutrophils and macrophages. Within such a pathogenic context, interleukin-6 (IL-6) and other cytokines/chemokines play a pivotal pro-inflammatory role. Therefore, cytokines and their receptors, as well as cytokine-dependent intracellular signalling pathways can be targeted by potential therapies aimed to relieve the heavy burden of cytokine storm. In particular, the anti-IL-6-receptor monoclonal antibody tocilizumab is emerging as one of the most promising pharmacologic treatments. The reviews of this paper are available via the supplemental material section.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Betacoronavirus , Infecções por Coronavirus/imunologia , Citocinas/imunologia , Imunidade Inata , Pulmão/metabolismo , Pneumonia Viral/imunologia , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Humanos , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/metabolismo , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...