Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Photosynth Res ; 123(1): 45-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25193505

RESUMO

The ability of Prochlorococcus to numerically dominate open ocean regions and contribute significantly to global carbon cycles is dependent in large part on its effectiveness in transforming light energy into compounds used in cell growth, maintenance, and division. Integral to these processes is the carbon dioxide-concentrating mechanism (CCM), which enhances photosynthetic CO2 fixation. The CCM involves both active uptake systems that permit intracellular accumulation of inorganic carbon as the pool of bicarbonate and the system of HCO3 (-) conversion into CO2. The latter is located in the carboxysome, a microcompartment designed to promote the carboxylase activity of Rubisco. This study presents a comparative analysis of several facets of the Prochlorococcus CCM. Our analyses indicate that a core set of CCM components is shared, and their genomic organization is relatively well conserved. Moreover, certain elements, including carboxysome shell polypeptides CsoS1 and CsoS4A, exhibit striking conservation. Unexpectedly, our analyses reveal that the carbonic anhydrase (CsoSCA) and CsoS2 shell polypeptide have diversified within the lineage. Differences in csoSCA and csoS2 are consistent with a model of unequal rates of evolution rather than relaxed selection. The csoS2 and csoSCA genes form a cluster in Prochlorococcus genomes, and we identified two conserved motifs directly upstream of this cluster that differ from the motif in marine Synechococcus and could be involved in regulation of gene expression. Although several elements of the CCM remain well conserved in the Prochlorococcus lineage, the evolution of differences in specific carboxysome features could in part reflect optimization of carboxysome-associated processes in dissimilar cellular environments.


Assuntos
Dióxido de Carbono/metabolismo , Prochlorococcus/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclo do Carbono , Cromossomos Bacterianos , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano , Dados de Sequência Molecular , Prochlorococcus/genética
2.
Photosynth Res ; 101(1): 1-19, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19557544

RESUMO

Although Prochlorococcus isolates possess the smallest genomes of any extant photosynthetic organism, this genus numerically dominates vast regions of the world's subtropical and tropical open oceans and has evolved to become an important contributor to global biogeochemical cycles. The sequencing of 12 Prochlorococcus genomes provides a glimpse of the extensive genetic heterogeneity and, thus, physiological potential of the lineage. In this study, we present an up-to-date comparative analysis of major proteins of the photosynthetic apparatus in 12 Prochlorococcus genomes. Our analyses reveal a striking diversity within the Prochlorococcus lineage in the major protein complexes of the photosynthetic apparatus. The heterogeneity that has evolved in the photosynthetic apparatus suggests versatility in strategies for optimizing photosynthesis under conditions of environmental variability and stress. This diversity could be particularly important in ensuring the survival of a lineage whose individuals have evolved minimal genomes and, thus, relatively limited repertoires for responding to environmental challenges.


Assuntos
Genoma Bacteriano/genética , Genômica/métodos , Fotossíntese/genética , Prochlorococcus/genética , Prochlorococcus/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano/fisiologia , Modelos Genéticos , Dados de Sequência Molecular , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Homologia de Sequência de Aminoácidos
3.
J Bacteriol ; 189(12): 4485-93, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17449628

RESUMO

In an age of comparative microbial genomics, knowledge of the near-native architecture of microorganisms is essential for achieving an integrative understanding of physiology and function. We characterized and compared the three-dimensional architecture of the ecologically important cyanobacterium Prochlorococcus in a near-native state using cryo-electron tomography and found that closely related strains have diverged substantially in cellular organization and structure. By visualizing native, hydrated structures within cells, we discovered that the MED4 strain, which possesses one of the smallest genomes (1.66 Mbp) of any known photosynthetic organism, has evolved a comparatively streamlined cellular architecture. This strain possesses a smaller cell volume, an attenuated cell wall, and less extensive intracytoplasmic (photosynthetic) membrane system compared to the more deeply branched MIT9313 strain. Comparative genomic analyses indicate that differences have evolved in key structural genes, including those encoding enzymes involved in cell wall peptidoglycan biosynthesis. Although both strains possess carboxysomes that are polygonal and cluster in the central cytoplasm, the carboxysomes of MED4 are smaller. A streamlined cellular structure could be advantageous to microorganisms thriving in the low-nutrient conditions characteristic of large regions of the open ocean and thus have consequences for ecological niche differentiation. Through cryo-electron tomography we visualized, for the first time, the three-dimensional structure of the extensive network of photosynthetic lamellae within Prochlorococcus and the potential pathways for intracellular and intermembrane movement of molecules. Comparative information on the near-native structure of microorganisms is an important and necessary component of exploring microbial diversity and understanding its consequences for function and ecology.


Assuntos
Microscopia Crioeletrônica/métodos , Prochlorococcus/ultraestrutura , Sequência de Aminoácidos , Proteínas de Bactérias/química , Membrana Celular/ultraestrutura , Parede Celular/genética , Parede Celular/ultraestrutura , Citoplasma/ultraestrutura , Genoma Bacteriano/genética , Corpos de Inclusão/genética , Corpos de Inclusão/ultraestrutura , Dados de Sequência Molecular , Peptidoglicano/biossíntese , Peptidoglicano/genética , Prochlorococcus/genética , Alinhamento de Sequência
4.
Nature ; 424(6952): 1042-7, 2003 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-12917642

RESUMO

The marine unicellular cyanobacterium Prochlorococcus is the smallest-known oxygen-evolving autotroph. It numerically dominates the phytoplankton in the tropical and subtropical oceans, and is responsible for a significant fraction of global photosynthesis. Here we compare the genomes of two Prochlorococcus strains that span the largest evolutionary distance within the Prochlorococcus lineage and that have different minimum, maximum and optimal light intensities for growth. The high-light-adapted ecotype has the smallest genome (1,657,990 base pairs, 1,716 genes) of any known oxygenic phototroph, whereas the genome of its low-light-adapted counterpart is significantly larger, at 2,410,873 base pairs (2,275 genes). The comparative architectures of these two strains reveal dynamic genomes that are constantly changing in response to myriad selection pressures. Although the two strains have 1,350 genes in common, a significant number are not shared, and these have been differentially retained from the common ancestor, or acquired through duplication or lateral transfer. Some of these genes have obvious roles in determining the relative fitness of the ecotypes in response to key environmental variables, and hence in regulating their distribution and abundance in the oceans.


Assuntos
Evolução Biológica , Cianobactérias/classificação , Cianobactérias/genética , Meio Ambiente , Genoma Bacteriano , Adaptação Fisiológica/efeitos da radiação , Cianobactérias/efeitos da radiação , Genes Bacterianos/genética , Luz , Dados de Sequência Molecular , Oceanos e Mares , Filogenia
5.
Trends Microbiol ; 10(3): 134-42, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11864823

RESUMO

Prochlorococcus and Synechococcus are abundant unicellular cyanobacteria and major participants in global carbon cycles. Although they are closely related and often coexist in the same ocean habitat, they possess very different photosynthetic light-harvesting antennas. Whereas Synechococcus and the majority of cyanobacteria use phycobilisomes, Prochlorococcus has evolved to use a chlorophyll a(2)/b(2) light-harvesting complex. Here, we present a scenario to explain how the Prochlorococcus antenna might have evolved in an ancestral cyanobacterium in iron-limited oceans, resulting in the diversification of the Prochlorococcus and marine Synechococcus lineages from a common phycobilisome-containing ancestor. Differences in the absorption properties and cellular costs between chlorophyll a(2)/b(2) and phycobilisome antennas in extant Prochlorococcus and Synechococcus appear to play a role in differentiating their ecological niches in the ocean environment.


Assuntos
Evolução Biológica , Cianobactérias/fisiologia , Fotossíntese , Água do Mar/microbiologia , Cianobactérias/genética , Ecossistema , Luz , Complexos de Proteínas Captadores de Luz , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Ficobilissomas , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...