RESUMO
Breakfast consumption is generally considered a health-promoting habit for cardiometabolism, particularly with regard to chrononutrition. Glucose uptake is enhanced by proper insulin secretion triggered by the pancreatic clock, averting metabolic dysregulation related to insulin resistance. Breakfast skipping, in turn, is often considered a behaviour detrimental to health, in part due to putative inverse metabolic actions compared to breakfast consumption, such that breakfast skipping may promote circadian desynchrony. However, most ill health concerns about breakfast skipping are inferred from observational research, and recent well-controlled randomized clinical trials have shown benefits of breakfast skipping for cardiovascular risk factors. Accordingly, this review describes the effects of breakfast consumption versus breakfast skipping on cardiovascular risk factors (blood pressure and glycaemic and lipid indices). In addition, the view of breakfast consumption as an opportunity for functional food ingestion is considered to provide further insights into decision-making practice. Collectively, both breakfast consumption and breakfast skipping can be considered viable habits, but they depend on individual preferences, planning, and the specific foods being consumed or omitted. When consumed, breakfast should consist primarily of functional foods typical for this meal (e.g., eggs, dairy products, nuts, fruits, whole grains, coffee, tea, etc.). While breakfast consumption aligns with chrononutrition principles, breakfast skipping can contribute to a calorie deficit over time, which has the potential for widespread cardiometabolic benefits for patients with overweight/obesity. The concepts and practical considerations discussed in the present review may aid health care personnel in personalising breakfast consumption recommendations for diverse patient populations.
Assuntos
Desjejum , Doenças Cardiovasculares , Humanos , Desjejum/fisiologia , Alimento Funcional , Obesidade/etiologia , Promoção da Saúde , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/complicações , Comportamento Alimentar/fisiologiaRESUMO
Myostatin, a secreted growth factor belonging to the transforming growth factor ß (TGF-ß) family, performs a role in hindering muscle growth by inhibiting protein kinase B (Akt) phosphorylation and the associated activation of hypertrophy pathways (e.g., IGF-1/PI3K/Akt/mTOR pathway). In addition to pharmacological agents, some supplements and nutraceutical agents have demonstrated modulatory effects on myostatin levels; however, the clinical magnitude must be appraised with skepticism before translating the mechanistic effects into muscle hypertrophy outcomes. Here, we review the effects of dietary supplements, nutraceutical agents, and physical exercise on myostatin levels, addressing the promise and pitfalls of relevant randomized clinical trials (RCTs) to draw clinical conclusions. RCTs involving both clinical and sports populations were considered, along with wasting muscle disorders (e.g., sarcopenia) and resistance training-induced muscle hypertrophy, irrespective of disease status. Animal models were considered only to expand the mechanisms of action, and observational data were consulted to elucidate potential cutoff values. Collectively, the effects of dietary supplements, nutraceutical agents, and physical exercise on myostatin mRNA expression in skeletal muscle and serum myostatin levels are not uniform, and there may be reductions, increases, or neutral effects. Large amounts of research using resistance protocols shows that supplements or functional foods do not clearly outperform placebo for modulating myostatin levels. Thus, despite some biological hope in using supplements or certain functional foods to decrease myostatin levels, caution must be exercised not to propagate the hope of the food supplement market, select health professionals, and laypeople.
RESUMO
This exploratory study investigated the effects of early v. delayed time-restricted eating (TRE) plus caloric restriction (CR) on body weight, body composition and cardiometabolic parameters in adults with overweight and obesity. Adults (20-40 years) were randomised to one of three groups for 8 weeks: early time-restricted eating (eTRE; 08.00-16.00) plus CR, delayed time-restricted eating (dTRE; 12.00-20.00) plus CR or only CR (CR; 08.00-20.00). All groups were prescribed a 25 % energy deficit relative to daily energy requirements. Thirteen participants completed the study in the eTRE and CR groups and eleven in the dTRE group (n 37). After the interventions, there was no significant difference between the three groups for any of the outcomes. Compared with baseline, significant decreases were observed in the body weight (eTRE group: -4·2 kg; 95 % CI, -5·6, -2·7; dTRE group: -4·8 kg; 95 % CI, -5·9, -3·7; CR: -4·0 kg; 95 % CI, -5·9, -2·1), fat mass (eTRE group: -2·9 kg; 95 % CI, -3·9, -1·9; dTRE group: -3·6 kg; 95 % CI, -4·6, -2·5; CR: -3·1 kg; 95 % CI, -4·3, -1·8) and fasting glucose levels (eTRE group: -4 mg/dl; 95 % CI, -8, -1; dTRE group: -2 mg/dl; 95 % CI, -8, 3; CR: -3 mg/dl; 95 % CI, -8, 2). In a free-living setting, TRE with a energetic deficit, regardless of the time of day, promotes similar benefits in weight loss, body composition and cardiometabolic parameters. However, given the exploratory nature of our study, further investigation is needed to confirm these findings.
RESUMO
Chronobiology plays a crucial role in modulating many physiologic systems in which there is nutritional synergism with meal timing. Given that intermittent fasting (IF) has grown as a flexible dietary method consisting of delayed or early eating windows, this scoping review addresses the effects of IF protocols on metabolism as they relate to clinical nutrition and the circadian system. Although nocturnal habits are associated with circadian misalignments and impaired cardiometabolic profile-and nutritional physiology is better orchestrated during the day-most findings are based on animal experiments or human studies with observational designs or acute meal tests. Well-controlled randomized clinical trials employing IF protocols of delayed or early eating windows have sometimes demonstrated clinical benefits, such as improved glycemic and lipid profiles, as well as weight loss. However, IF does not appear to be more effective than traditional diets at the group level, and its effects largely depend on energy restriction. Thus, efforts must be made to identify patient biological rhythms, preferences, routines, and medical conditions before individual dietary prescription in clinical practice.
Assuntos
Jejum , Redução de Peso , Animais , Glicemia , Ritmo Circadiano , Dieta , Humanos , Refeições/fisiologia , Redução de Peso/fisiologiaRESUMO
"Eat breakfast like a king, lunch like a prince and dinner like a pauper" (Adelle Davis, 1904-1974) is a concept that appears to align with some contemporary evidence concerning the appropriate proportioning of daily meals. At the same time, with the popular and scientific dissemination of the concepts of intermittent fasting and time-restricted feeding, well-controlled clinical trials have emerged showing the safety or even possible benefits of skipping breakfast. In this comprehensive literature review, we discuss recent evidence regarding breakfast intake, cardiovascular outcomes and cardiovascular risk markers. Overall, breakfast omission appears to be associated with a higher risk for atherosclerotic and adverse cardiovascular outcomes. However, caution should be employed when deciphering these data as many complex, unmeasured confounders may have contributed. Unfortunately, long-term randomized, clinical trials with detailed dietary control that have assessed clinical outcomes are sparse. Notwithstanding the observational findings, current trials conducted so far-albeit apparently smaller number-have shown that breakfast addition in subjects who do not habitually consume this meal may increase body weight, particularly fat mass, through caloric excess, whereas skipping breakfast may be a feasible strategy for some people aiming for calorie restriction. To date, definitive benefits of breakfast omission or consumption are not supported by the best evidence-based research, and the question of whether skipping breakfast per se is causally associated with cardiovascular outcomes remains unresolved.
Assuntos
Desjejum , Doenças Cardiovasculares , Doenças Cardiovasculares/prevenção & controle , Comportamento Alimentar , Humanos , Almoço , RefeiçõesRESUMO
Meal timing may be a critical modulator of health outcomes due to complex interactions between circadian biology, nutrition and human metabolism. As such, approaches that aim to align food consumption with endogenous circadian rhythms are emerging in recent years. Time-restricted eating (TRE) consists of limiting daily nutrient consumption to a period of 4 to 12 hours in order to extend the time spent in the fasted state. TRE can induce positive effects on the health of individuals with overweight and obesity, including sustained weight loss, improvement in sleep patterns, reduction in blood pressure and oxidative stress markers and increased insulin sensitivity. However, it is not fully clear whether positive effects of TRE are due to reduced energy intake, body weight or the truncation of the daily eating window. In addition, null effects of TRE in some populations and on some parameters of cardiometabolic health have been documented. Some evidence indicates that greater promotion of health via TRE may be achieved if the nutrient intake period occurs earlier in the day. Despite some promise of this dietary strategy, the effects of performing TRE at different times of the day on human cardiometabolic health, as well as the safety and efficacy of this dietary approach in individuals with cardiometabolic impairments, need to be evaluated in additional controlled and long-term studies.
Assuntos
Ritmo Circadiano , Jejum , Relógios Biológicos , Peso Corporal , Ingestão de Alimentos , Ingestão de Energia , Comportamento Alimentar , HumanosRESUMO
A scientific interest has emerged to identify pharmaceutical and nutritional strategies in the clinical management of coronavirus disease 2019 (COVID-19). The purpose of this narrative review is to critically assess and discuss pharmaconutrition strategies that, secondary to accepted treatment methods, could be candidates in the current context of COVID-19. Oral medicinal doses of vitamin C (1-3 g/d) and zinc (80 mg/d elemental zinc) could be promising at the first signs and symptoms of COVID-19 as well as for general colds. In critical care situations requiring parenteral nutrition, vitamin C (3-10 g/d) and glutamine (0.3-0.5 g/kg/d) administration could be considered, whereas vitamin D3 administration (100,000 IU administered intramuscularly as a one-time dose) could possess benefits for patients with severe deficiency. Considering the presence of n-3 polyunsaturated fatty acids and arginine in immune-enhancing diets, their co-administration may also occur in clinical conditions where these formulations are recommended. However, despite the use of the aforementioned strategies in prior contexts, there is currently no evidence of the utility of any nutritional strategies in the management of SARS-CoV-2 infection and COVID-19. Nevertheless, ongoing and future clinical research is imperative to determine if any pharmaconutrition strategies can halt the progression of COVID-19.