Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1273791, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111734

RESUMO

Monoamniotic twins develop when a blastocyst spontaneously splits its progenitor cells, and each group of progenitor cells independently grows to become an individual. It is the rarest type of twin pregnancy and usually has significant developmental or congenital abnormalities, a higher rate of abortion, perinatal morbidity, and mortality. There is no information regarding monoamniotic twins in livestock species. Here, we reported a spontaneous abortion of monoamniotic twins in a dromedary camel at 278 days of gestation. Gonadorelin acetate (100 µg) was injected intramuscularly to induce ovulation in the recipient. A 7 days-old embryo produced by somatic cell nuclear transfer was transferred transcervically to the recipient. Early pregnancy was confirmed by an elevated level of serum progesterone followed by ultrasonography at 22 and 44 days after embryo transfer. A single sac was observed on 22 days while twins were evident 44 days after embryo transfer. Pregnancy was periodically monitored by the tail-up phenomenon. A ruptured fetal sac was observed on the ground having two fetuses. On autopsy, full-grown fetuses were found. Their bodies were separated. There was no congenital anomaly or any malformation in the fetuses. According to the reported chronology in human twins, we hypothesized that the blastocyst splitted before 13 days as it was monoamniotic and not conjoined. If the embryo splits within 4 to 8 days, it develops two amniotic sacs, and splitting after 13 days develops conjoined fetuses. To the authors' knowledge, this is the first reported case of monoamniotic twin abortion in dromedary camels. This report will increase awareness among practicing veterinarians and camel breeders about twin abortions.

2.
Front Vet Sci ; 9: 895325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558897

RESUMO

The present study investigated the effect of superstimulation to improve in vitro embryo production in the Gulf area, where the temperature is high. Holstein cows were classified into the control and superstimulation groups. Superstimulation was induced with a single intramuscular injection of pregnant mare serum gonadotropin (PMSG; 2500 IU) on day 14 of the estrus cycle (day 0; estrus). The development of follicles was evaluated by ultrasonography of the ovaries daily. At 40 h after the PMSG injection, oocytes were collected by the ovum pick-up (OPU) technique. OPU was performed at the same stage of the estrus cycle in the control group as in the superstimulation group. The number of follicles with a diameter of more than 6 mm and the number of retrieved cumulus-oocyte complexes were significantly higher in the superstimulation group than in the control group. Furthermore, the maturation rate was higher in the superstimulation group than in the control group. Cloned embryos were produced by somatic cell nuclear transfer using matured oocytes. The cleavage and blastocyst formation rates were significantly higher in the superstimulation group than in the control group. In conclusion, a single injection of PMSG can facilitate the efficient production of cloned cow embryos.

3.
Zygote ; 30(4): 522-527, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35357293

RESUMO

We compared the pregnancy and live birth rates following transfer of early-stage embryos or blastocysts produced by somatic cell nuclear transfer using in vitro-matured oocytes. In total 102 ovaries were collected from dromedary camels at a local abattoir; from these 1048 cumulus-oocytes complexes (COCs) were aspirated and cultured for 42 h in a commercial maturation medium. Metaphase II oocytes were subjected to nuclear transfer. Somatic cell nuclear transfer-derived embryos were cultured in a commercial embryo medium for 2 or 7 days. Next, 71 early-stage embryos were surgically transferred to the left fallopian tube of 28 recipients and 47 blastocysts were transferred to the left uterine horn of 26 recipients. Early pregnancy was detected by serum progesterone (P4), and pregnancy was confirmed using ultrasonography on days 30 and 90 after embryo transfer. Pregnancy rate based on P4 level was 17.86% (5/28) and 11.54% (3/26) for early-stage embryo and blastocyst transfer, respectively. In the early-stage embryo group, out of five recipients, one recipient had lost the pregnancy by the first ultrasonography on day 30; two other recipients aborted at 14 and 24 weeks, and two recipients gave live births. In the blastocyst group, out of three recipients, one lost the pregnancy at an early stage and two recipients gave live births. Therefore, for dromedary camels, we recommend transvaginal blastocyst transfer from the standpoint of the pregnancy and live birth rate, ease of the transfer procedure, and comfort and safety of the recipients.


Assuntos
Camelus , Técnicas de Cultura Embrionária , Animais , Blastocisto , Técnicas de Cultura Embrionária/métodos , Transferência Embrionária , Feminino , Oócitos , Gravidez , Taxa de Gravidez
4.
Anim Biosci ; 35(2): 177-183, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34289583

RESUMO

OBJECTIVE: The present study evaluated the efficiency of embryo development and pregnancy of somatic cell nuclear transfer (SCNT) embryos using different source-matured oocytes in Camelus dromedarius. METHODS: Camelus dromedarius embryos were produced by SCNT using in vivo- and in vitro- matured oocytes. In vitro embryo developmental capacity of reconstructed embryos was evaluated. To confirm the efficiency of pregnancy and live birth rates, a total of 72 blastocysts using in vitro- matured oocytes transferred into 45 surrogates and 95 blastocysts using in vivo- matured oocytes were transferred into 62 surrogates by transvaginal method. RESULTS: The collected oocytes derived from ovum pick up showed higher maturation potential into metaphase II oocytes than oocytes from the slaughterhouse. The competence of cleavage, and blastocyst were also significantly higher in in vivo- matured oocytes than in vitro- matured oocytes. After embryo transfer, 11 pregnant and 10 live births were confirmed in in vivo- matured oocytes group, and 2 pregnant and 1 live birth were confirmed in in vitro- matured oocytes group. Furthermore, blastocysts produced by in vivo-matured oocytes resulted in significantly higher early pregnancy and live birth rates than in vitromatured oocytes. CONCLUSION: In this study, SCNT embryos using in vivo- and in vitro-matured camel oocytes were successfully developed, and pregnancy was established in recipient camels. We also confirmed that in vivo-matured oocytes improved the development of embryos and the pregnancy capacity using the blastocyst embryo transfer method.

5.
Animals (Basel) ; 11(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34573657

RESUMO

Somatic cell nuclear transfer (SCNT) provides a unique opportunity to reproduce animals with superior genetics. Viable cell lines are usually established from tissues collected by biopsy from living animals in the SCNT program. In the present study, tissues were collected and preserved from a suddenly deceased champion camel. We established cell lines from these decade-old tissues and used them as nuclear donors. After 42 h of in vitro maturation, 68.00 ± 2.40% of oocytes reached the metaphase II (M II) stage while 87.31 ± 2.57% in vivo collected oocytes were matured at collection (p < 0.05). We observed a higher blastocyst formation rate when in vivo matured oocytes (43.45 ± 2.07%) were used compared to in vitro matured oocytes (21.52 ± 1.74%). The live birth rate was 6.45% vs. 16.67% for in vitro and in vivo matured oocytes, respectively. Microsatellite analysis of 13 camel loci revealed that all the SCNT-derived offspring were identical to each other and with their somatic cell donor. The present study succeeded in the resurrection of 11 healthy offspring from the decade-old vitrified tissues of a single somatic cell donor individual using both in vitro and in vivo matured oocytes.

6.
Anim Reprod Sci ; 233: 106842, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34530180

RESUMO

The embryonic stage, site of embryo transfer in the reproductive tract of the surrogate, and embryo transfer method are important for the successful production of offspring. In the present study, there was comparison of pregnancy rates in camels following the surgical transfer of early-developmental stage embryos at Day 2 and transvaginal transfer of blastocysts at Day 7. Embryos were produced by somatic cell nuclear transfer using in vivo-matured oocytes and ear fibroblasts as donor cells. A total of 305 oocytes were collected from 27 donors, among which 275 oocytes were in metaphase II. In Group A, 110 oocytes were reconstructed, 78 fused oocytes were cultured for 2 days, and 37 early-developmental stage embryos were transferred into 13 surrogates. In Group B, 165 oocytes were utilized, 117 fused oocytes were cultured for 7 days, and 24 blastocysts were trans-vaginally transferred into 12 surrogates. Pregnancy was determined when there was an increase in serum progesterone concentrations and was confirmed using real-time ultrasonography. Microsatellite analysis was performed to confirm the parentage of offspring. Two live births occurred in Groups A and B (live birth rate of 15.4% and 16.7%, respectively). Results indicate both early-developmental stage embryos and blastocysts produced by somatic cell nuclear transfer using in vivo-matured oocytes can lead to live births in camel with similar efficiency. It, therefore, is recommended that trans-vaginal blastocyst transfer be utilized for camels considering the pregnancy and live birth rates, ease of the transfer procedure and comfort and safety of surrogates.

7.
Animals (Basel) ; 11(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203207

RESUMO

Mesenchymal stem cells (MSCs) are promising multipotent cells with applications for cartilage tissue regeneration in stem cell-based therapies. In cartilage regeneration, both bone marrow (BM-MSCs) and synovial fluid (SF-MSCs) are valuable sources. However, the cellular characteristics and chondrocyte differentiation potential were not reported in either of the camel stem cells. The in vitro chondrocyte differentiation competence of MSCs, from (BM and SF) sources of the same Camelus dromedaries (camel) donor, was determined. Both MSCs were evaluated on pluripotent markers and proliferation capacity. After passage three, both MSCs showed fibroblast-like morphology. The proliferation capacity was significantly increased in SF-MSCs compared to BM-MSCs. Furthermore, SF-MSCs showed an enhanced expression of transcription factors than BM-MSCs. SF-MSCs exhibited lower differentiation potential toward adipocytes than BM-MSCs. However, the osteoblast differentiation potential was similar in MSCs from both sources. Chondrogenic pellets obtained from SF-MSCs revealed higher levels of chondrocyte-specific markers than those from BM-MSCs. Additionally, glycosaminoglycan (GAG) content was elevated in SF-MSCs related to BM-MSCs. This is, to our knowledge, the first study to establish BM-MSCs and SF-MSCs from the same donor and to demonstrate in vitro differentiation potential into chondrocytes in camels.

9.
Animals (Basel) ; 11(4)2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916532

RESUMO

Mesenchymal stem cells (MSCs) showed in vitro mesoderm-lineage differentiation and self-renewal capacity. However, no comparative study was reported on the biological characteristics of stem cells derived from skeletal muscle (SM-MSCs), dermal skin (DS-MSCs), and adipose tissues (A-MSCs) from a single donor in camels. The present study aimed to evaluate the influence of MSCs source on stem cell characteristics. We evaluated proliferation capacity and mesoderm-lineage differentiation potential from SM-MSCs, DS-MSCs, and A-MSCs. They showed spindle-like morphology after homogenization. The proliferation ability was not significantly difference in any of the groups. Furthermore, the portion of the cell cycle and expression of pluripotent markers (Oct4, Sox2, and Nanog) were similar in all cell lines at passage 3. The differentiation capacity of A-MSCs into adipocytes was significantly higher than that of SM-MSCs and DS-MSCs. However, the osteoblast differentiation capacity of A-MSCs was significantly lower than that of SM-MSCs and DS-MSCs. Additionally, after osteoblast differentiation, the alkaline phosphatase (ALP) activity and calcium content significantly decreased in A-MSCs compared to SM-MSCs and DS-MSCs. To the best of our knowledge, we primarily established MSCs from the single camel and demonstrated their comparative characteristics, including expression of pluripotent factors and proliferation, and in vitro differentiation capacity into adipocytes and osteoblasts.

10.
Indian J Microbiol ; 56(4): 383-393, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27784933

RESUMO

In order to advance the assisted reproductive technologies used in animals and human beings, it is important to accumulate basic informations about underlying molecular mechanisms that shape the biological processes of reproduction. From within seminal plasma, proteins perform a wide variety of distinct functions that regulate major reproductive events such as fertilization. The ability of such proteins to bind and interact with different antagonistic ions and biomolecules such as polysaccharides, lipids, and other proteins present in the male and female reproductive tract define these capabilities. Over the last two decades, extensive work has been undertaken in an attempt to define the role of seminal plasma proteins, of which, Gelatin binding proteins (GBPs) represent a large family. GBPs comprise of known group of Bovine seminal plasma (BSP) protein family, matrix metallo proteinases (MMP 2 and MMP 9) and fibronectin, which have been widely studied. The presence of a type II repeat is a characteristic feature of GBPs, which is similar in structure to the fibronectin type II domain (fn2), which has ability to bind multiple ligands including gelatin, glycosaminoglycans, choline phospholipids, and lipoproteins. Two fn2 domains are present within the BSP protein family, while, three fn2 domains are found in gelatinases (MMP-2 and MMP9), and ELSPBP1 (Epididymosomes Transfer Epididymal Sperm Binding Protein 1) contains four long fn2 domains. For the most part BSP proteins are exclusively expressed in seminal vesicles although mBSPH1, mBSPH2 and hBSPH1 are all expressed in the epididymis. The expression of gelatinases has been demonstrated in several organs and tissues such as the prostate, testis, epididymis, ovary, human placenta, cervix and endometrial wall. This review intends to bring current updates on the role of GBPs in reproductive physiology to light, which may act as basis for future studies on GBPs.

11.
Mol Cell Probes ; 30(5): 326-330, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27475303

RESUMO

Camel racing is a popular sport in the Middle East region, where the demand is high for racing camels with higher stamina and endurance. Devising a technique to measure oxidative capacity and endurance in camels should be useful. Mitochondria are highly specialized organelles involved in metabolism in all higher organisms for sustaining life and providing energy for physical functions. The ratio of mitochondrial DNA (mtDNA) to nuclear DNA (nDNA) is often used as an estimate for the metabolic status of the tissue. A greater quantity of mitochondria per unit of tissue translates into greater oxidative capacity and endurance. In this report, we describe a simple, sensitive and efficient real-time PCR assay for the quantification of blood mitochondria in racing camels. The primer sequences selected for the SYBR green-based PCR assay included mitochondrial D-loop region, mitochondrial ATP6ase gene and the nuclear ß-actin gene. The assay was validated using two groups of camels comprising racing and dairy camels. The racing camels demonstrated a higher mtDNA/nDNA ratio compared with dairy camels based on the ΔΔCt values, with a higher variability among racing camels. The mean ΔΔCt values of adult and young racing camels did not vary considerably. The findings show that the present assay can be used as an evaluative tool for racing camels.


Assuntos
Camelus/genética , Mitocôndrias/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Camelus/sangue , Genoma Mitocondrial , Padrões de Referência , Análise de Regressão , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...