Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 187: 111956, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31841728

RESUMO

We have reported on aristeromycin (1) and 6'-fluorinated-aristeromycin analogues (2), which are active against RNA viruses such as Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), Zika virus (ZIKV), and Chikungunya virus (CHIKV). However, these exhibit substantial cytotoxicity. As this cytotoxicity may be attributed to 5'-phosphorylation, we designed and synthesized one-carbon homologated 6'-fluorinated-aristeromycin analogues. This modification prevents 5'-phosphorlyation by cellular kinases, whereas the inhibitory activity towards S-adenosyl-l-homocysteine (SAH) hydrolase will be retained. The enantiomerically pure 6'-fluorinated-5'-homoaristeromycin analogues 3a-e were synthesized via the electrophilic fluorination of the silyl enol ether with Selectfluor, using a base-build up approach as the key steps. All synthesized compounds exhibited potent inhibitory activity towards SAH hydrolase, among which 6'-ß-fluoroadenosine analogue 3a was the most potent (IC50 = 0.36 µM). Among the compounds tested, 6'-ß-fluoro-homoaristeromycin 3a showed potent antiviral activity (EC50 = 0.12 µM) against the CHIKV, without noticeable cytotoxicity up to 250 µM. Only 3a displayed anti-CHIKV activity, whereas both3a and 3b inhibited SAH hydrolase with similar IC50 values (0.36 and 0.37 µM, respectively), which suggested that 3a's antiviral activity did not merely depend on the inhibition of SAH hydrolase. This is further supported by the fact that the antiviral effect was specific for CHIKV and some other alphaviruses and none of the homologated analogues inhibited other RNA viruses, such as SARS-CoV, MERS-CoV, and ZIKV. The potent inhibition and high selectivity index make 6'-ß-fluoro-homoaristeromycin (3a) a promising new template for the development of antivirals against CHIKV, a serious re-emerging pathogen that has infected millions of people over the past 15 years.


Assuntos
Adenosina/análogos & derivados , Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Adenosina/síntese química , Adenosina/química , Adenosina/farmacologia , Antivirais/síntese química , Antivirais/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
2.
Nucleosides Nucleotides Nucleic Acids ; 28(5): 601-13, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-20183604

RESUMO

On the basis of inhibitory activity of truncated cyclopentenyl cytosine against S-adenosylhomocysteine hydrolase (SAH), its fluorocyclopentenyl pyrimidine derivatives were efficiently synthesized from D-ribose via electrophilic fluorination as a key step. The final nucleosides were evaluated for SAH inhibitory activity, among which the uracil derivative 9 showed significant inhibitory activity (IC(50) = 8.53 microM). They were also evaluated for cytotoxic effects in several human cancer cell lines such as fibro sarcoma, stomach cancer, leukemia, and colon cancer, but they did not show any cytotoxic effects up to 100 microM, indicating that 4'-hydroxymethyl groups are essential for the anticancer activity.


Assuntos
Adenosil-Homocisteinase/antagonistas & inibidores , Adenosil-Homocisteinase/metabolismo , Pirimidinas/química , Pirimidinas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Compostos de Flúor/síntese química , Compostos de Flúor/química , Compostos de Flúor/farmacologia , Humanos , Pirimidinas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...