Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(24): e2315700121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830099

RESUMO

Given the importance of climate in shaping species' geographic distributions, climate change poses an existential threat to biodiversity. Climate envelope modeling, the predominant approach used to quantify this threat, presumes that individuals in populations respond to climate variability and change according to species-level responses inferred from spatial occurrence data-such that individuals at the cool edge of a species' distribution should benefit from warming (the "leading edge"), whereas individuals at the warm edge should suffer (the "trailing edge"). Using 1,558 tree-ring time series of an aridland pine (Pinus edulis) collected at 977 locations across the species' distribution, we found that trees everywhere grow less in warmer-than-average and drier-than-average years. Ubiquitous negative temperature sensitivity indicates that individuals across the entire distribution should suffer with warming-the entire distribution is a trailing edge. Species-level responses to spatial climate variation are opposite in sign to individual-scale responses to time-varying climate for approximately half the species' distribution with respect to temperature and the majority of the species' distribution with respect to precipitation. These findings, added to evidence from the literature for scale-dependent climate responses in hundreds of species, suggest that correlative, equilibrium-based range forecasts may fail to accurately represent how individuals in populations will be impacted by changing climate. A scale-dependent view of the impact of climate change on biodiversity highlights the transient risk of extinction hidden inside climate envelope forecasts and the importance of evolution in rescuing species from extinction whenever local climate variability and change exceeds individual-scale climate tolerances.


Assuntos
Mudança Climática , Extinção Biológica , Pinus , Pinus/fisiologia , Árvores , Biodiversidade , Previsões/métodos , Temperatura , Modelos Climáticos
2.
Stat Med ; 41(21): 4266-4283, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35796389

RESUMO

In biomedical research, the outcome of longitudinal studies has been traditionally analyzed using the repeated measures analysis of variance (rm-ANOVA) or more recently, linear mixed models (LMEMs). Although LMEMs are less restrictive than rm-ANOVA as they can work with unbalanced data and non-constant correlation between observations, both methodologies assume a linear trend in the measured response. It is common in biomedical research that the true trend response is nonlinear and in these cases the linearity assumption of rm-ANOVA and LMEMs can lead to biased estimates and unreliable inference. In contrast, GAMs relax the linearity assumption of rm-ANOVA and LMEMs and allow the data to determine the fit of the model while also permitting incomplete observations and different correlation structures. Therefore, GAMs present an excellent choice to analyze longitudinal data with non-linear trends in the context of biomedical research. This paper summarizes the limitations of rm-ANOVA and LMEMs and uses simulated data to visually show how both methods produce biased estimates when used on data with non-linear trends. We present the basic theory of GAMs and using reported trends of oxygen saturation in tumors, we simulate example longitudinal data (2 treatment groups, 10 subjects per group, 5 repeated measures for each group) to demonstrate their implementation in R. We also show that GAMs are able to produce estimates with non-linear trends even when incomplete observations exist (with 40% of the simulated observations missing). To make this work reproducible, the code and data used in this paper are available at: https://github.com/aimundo/GAMs-biomedical-research.


Assuntos
Pesquisa Biomédica , Projetos de Pesquisa , Análise de Variância , Humanos , Modelos Lineares , Estudos Longitudinais
3.
Ecology ; 98(3): 632-646, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27935640

RESUMO

Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data.


Assuntos
Ecologia , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...