Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Plant Direct ; 4(6): e00230, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32524060

RESUMO

Plant height (PH) data collected at high temporal resolutions can give insight into how genotype and environmental variation influence plant growth. However, in order to increase the temporal resolution of PH data collection, more robust, rapid, and low-cost methods are needed to evaluate field plots than those currently available. Due to their low cost and high functionality, unmanned aerial vehicles (UAVs) provide an efficient means for collecting height at various stages throughout development. We have developed a procedure for utilizing structure from motion algorithms to collect PH from RGB drone imagery and have used this platform to characterize a yield trial consisting of 24 maize hybrids planted in replicate under two dates and three planting densities. PH data was collected using both weekly UAV flights and manual measurements. The comparisons of UAV-based and manually acquired PH measurements revealed sources of error in measuring PH and were used to develop a robust pipeline for generating UAV-based PH estimates. This pipeline was utilized to document differences in the rate of growth between genotypes and planting dates. Our results also demonstrate that growth rates generated by PH measurements collected at multiple timepoints early in development can be useful in improving predictions of PH at the end of the season. This method provides a low cost, high throughput method for evaluating plant growth in response to environmental stimuli on a plot basis that can be implemented at the scale of a breeding program.

3.
Theor Appl Genet ; 133(10): 2761-2773, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32572549

RESUMO

KEY MESSAGE: Significant introgression-by-environment interactions are observed for traits throughout development from small introgressed segments of the genome. Relatively small genomic introgressions containing quantitative trait loci can have significant impacts on the phenotype of an individual plant. However, the magnitude of phenotypic effects for the same introgression can vary quite substantially in different environments due to introgression-by-environment interactions. To study potential patterns of introgression-by-environment interactions, fifteen near-isogenic lines (NILs) with > 90% B73 genetic background and multiple Mo17 introgressions were grown in 16 different environments. These environments included five geographical locations with multiple planting dates and multiple planting densities. The phenotypic impact of the introgressions was evaluated for up to 26 traits that span different growth stages in each environment to assess introgression-by-environment interactions. Results from this study showed that small portions of the genome can drive significant genotype-by-environment interaction across a wide range of vegetative and reproductive traits, and the magnitude of the introgression-by-environment interaction varies across traits. Some introgressed segments were more prone to introgression-by-environment interaction than others when evaluating the interaction on a whole plant basis throughout developmental time, indicating variation in phenotypic plasticity throughout the genome. Understanding the profile of introgression-by-environment interaction in NILs is useful in consideration of how small introgressions of QTL or transgene containing regions might be expected to impact traits in diverse environments.


Assuntos
Interação Gene-Ambiente , Genoma de Planta , Locos de Características Quantitativas , Zea mays/genética , Meio Ambiente , Genótipo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...