Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Biochimie ; 218: 152-161, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37704077

RESUMO

The aims of this study are to characterize the antiplatelet activity of StSBTc-3, a potato serine protease with fibrino (geno) lytic activity, and to provide information on its mechanism of action. The results obtained show that StSBTc-3 inhibits clot retraction and prevents platelet aggregation induced by thrombin, convulxin, and A23187. Platelet aggregation inhibition occurs in a dose-dependent manner and is not affected by inactivation of StSBTc-3 with the inhibitor of serine proteases phenylmethylsulfonyl fluoride (PMSF). In addition, StSBTc-3 reduces fibrinogen binding onto platelets. In-silico calculations show a high binding affinity between StSBTc-3 and human α2bß3 integrin suggesting that the antiplatelet activity of StSBTc-3 could be associated with the fibronectin type III domain present in its amino acid sequence. Binding experiments show that StSBTc-3 binds to α2bß3 preventing the interaction between α2bß3 and fibrinogen and, consequently, inhibiting platelet aggregation. StSBTc-3 represents a promising compound to be considered as an alternative to commercially available drugs used in cardiovascular therapies.


Assuntos
Solanum tuberosum , Humanos , Serina/metabolismo , Plaquetas/metabolismo , Agregação Plaquetária , Serina Endopeptidases/metabolismo , Fibrinogênio/metabolismo , Subtilisinas/metabolismo
2.
Biotechnol Rep (Amst) ; 22: e00330, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31008066

RESUMO

The aim of this study was to optimize in vitro conditions to enhance fibrinogenolytic activity of Solanum tuberosum subtilisin-like protease (StSBTc-3). The effects of StSTBc-3 concentration (0.2-5 µM), pH value (6-10) and temperature (35-50 °C) on fibrinogenolytic activity were studied through response surface methodology (RSM). We obtained a model that predicts the response accurately. The relationship between enzyme concentration and fibrinogenolytic activity was linear, while the main effect from pH and temperature on the response was quadratic. From the RSM generated model the optimum pH was 8 and the optimum temperature was 43 °C, while higher concentrations of enzyme produce higher activities. Under optimum conditions there were no statistically significant differences between the experimental responses and the ones predicted from the model. This model also predicts the activity under physiological conditions. These results confirm that StSTBc-3 is a good candidate to be considered for therapeutic uses. The generated model will be useful for biotechnological purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...