Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38927295

RESUMO

The symbiotic interaction between leguminous and Bradyrhizobium sp. SUTN9-2 mainly relies on the nodulation process through Nod factors (NFs), while the type IV secretion system (T4SS) acts as an alternative pathway in this symbiosis. Two copies of T4SS (T4SS1 and T4SS2) are located on the chromosome of SUTN9-2. ΔT4SS1 reduces both nodule number and nitrogenase activity in all SUTN9-2 nodulating legumes. The functions of three selected genes (copG1, traG1, and virD21) within the region of T4SS1 were examined. We generated deleted mutants and tested them in Vigna radiata cv. SUT4. ΔtraG1 and ΔvirD21 exhibited lower invasion efficiency at the early stages of root infection but could be recently restored. In contrast, ΔcopG1 completely hindered nodule organogenesis and nitrogenase activity in all tested legumes. ΔcopG1 showed low expression of the nodulation gene and ttsI but exhibited high expression levels of the T4SS genes, traG1 and trbE1. The secreted proteins from ΔT4SS1 were down-regulated compared to the wild-type. Although ΔcopG1 secreted several proteins after flavonoid induction, T3SS (nopP and nopX) and the C4-dicarboxylate transporter (dct) were not detected. These results confirm the crucial role of the copG1 gene as a novel key regulator in the symbiotic relationship between SUTN9-2 and legumes.

2.
Microbiol Spectr ; : e0194723, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37681944

RESUMO

The functional significance of rpoN genes that encode two sigma factors in the Bradyrhizobium sp. strain DOA9 has been reported to affect colony formation, root nodulation characteristics, and symbiotic interactions with Aeschynomene americana. rpoN mutant strains are defective in cellular surface polysaccharide (CSP) production compared with the wild-type (WT) strain, and they accordingly exhibit smaller colonies and diminished symbiotic effectiveness. To gain deeper insights into the changes in CSP composition and the nodules of rpoN mutants, we employed synchrotron-based Fourier transform infrared (SR-FTIR) microspectroscopy and X-ray absorption spectroscopy. FTIR analysis of the CSP revealed the absence of specific components in the rpoN mutants, including lipids, carboxylic groups, polysaccharide-pyranose rings, and ß-galactopyranosyl residues. Nodules formed by DOA9WT exhibited a uniform distribution of lipids, proteins, and carbohydrates; mutant strains, particularly DOA9∆rpoNp:ΩrpoNc, exhibited decreased distribution uniformity and a lower concentration of C=O groups. Furthermore, Fe K-edge X-ray absorption near-edge structure and extended X-ray absorption fine structure analyses revealed deficiencies in the nitrogenase enzyme in the nodules of DOA9∆rpoNc and DOA9∆rpoNp:ΩrpoNc mutants; nodules from DOA9WT and DOA9∆rpoNp exhibited both leghemoglobin and the nitrogenase enzyme. IMPORTANCE This work provides valuable insights into how two rpoN genes affect the composition of cellular surface polysaccharides (CSPs) in Bradyrhizobium sp., which subsequently dictates root nodule chemical characteristics and nitrogenase production. We used advanced synchrotron methods, including synchrotron-based Fourier transform infrared (SR-FTIR) microspectroscopy and X-ray absorption spectroscopy (XAS), for the first time in this field to analyze CSP components and reveal the biochemical changes occurring within nodules. These cutting-edge techniques confer significant advantages by providing detailed molecular information, enabling the identification of specific functional groups, chemical bonds, and biomolecule changes. This research not only contributes to our understanding of plant-microbe interactions but also establishes a foundation for future investigations and potential applications in this field. The combined use of the synchrotron-based FTIR and XAS techniques represents a significant advancement in facilitating a comprehensive exploration of bacterial CSPs and their implications in plant-microbe interactions.

3.
Appl Environ Microbiol ; 89(6): e0004023, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37255432

RESUMO

There has been little study of the type IV secretion system (T4SS) of bradyrhizobia and its role in legume symbiosis. Therefore, broad host range Bradyrhizobium sp. SUTN9-2 was selected for study. The chromosome of Bradyrhizobium sp. SUTN9-2 contains two copies of the T4SS gene, homologous with the tra/trb operons. A phylogenetic tree of the T4SS gene traG was constructed, which exemplified its horizontal transfer among Bradyrhizobium and Mesorhizobium genera. They also showed similar gene arrangements for the tra/trb operons. However, the virD2 gene was not observed in Mesorhizobium, except M. oppotunistum WSM2075. Interestingly, the orientation of copG, traG, and virD2 cluster was unique to the Bradyrhizobium genus. The phylogenetic tree of copG, traG, and virD2 demonstrated that copies 1 and 2 of these genes were grouped in different clades. In addition, the derived mutant and complementation strains of T4SS were investigated in representative legumes Genistoids, Dalbergioids, and Millettiods. When T4SS copy 1 (T4SS1) was deleted, the nodule number and nitrogenase activity decreased. This supports a positive effect of T4SS1 on symbiosis. In addition, delayed nodulation was observed 7 dpi, which was restored by the complementation of T4SS1. Therefore, T4SS plays an important role in the symbiotic interaction between Bradyrhizobium sp. SUTN9-2 and its leguminous hosts. IMPORTANCE SUTN9-2 is a broad host range strain capable of symbiosis with several legumes. Two copies of T4SS clusters belonging to the tra/trb operon are observed on chromosomes with different gene arrangements. We use phylogenetic tree and gene annotation analysis to predict the evolution of the tra/trb operon of rhizobia. Our finding suggests that the gene encoding the T4SS gene among Bradyrhizobium and Mesorhizobium may have coevolution. In addition, Bradyrhizobium has a uniquely arranged copG, traG, and virD2 gene cluster. The results of T4SS1 gene deletion and complementation revealed its positive effect on nodulation. Therefore, T4SS seems to be another determinant for symbiosis. This is the first report on the role of T4SS in Bradyrhizobium symbiosis.


Assuntos
Bradyrhizobium , Fabaceae , Simbiose , Filogenia , Bradyrhizobium/genética , Sistemas de Secreção Tipo IV , Verduras
4.
J Gen Appl Microbiol ; 69(3): 175-183, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36858546

RESUMO

Bacillus velezensis S141, a plant growth-promoting rhizobacteria (PGPR), was isolated from a soybean field in Thailand. Previous studies demonstrated that S141 enhanced soybean growth, stimulating nodulation for symbiotic nitrogen fixation with soybean root nodule bacteria, including Bradyrhizobium diazoefficience USDA110. Isoflavone glycosides are produced in soybean roots and hydrolyzed into their aglycones, triggering nodulation. This study revealed that S141 efficiently hydrolyzed two isoflavone glycosides in soybean roots (daidzin and genistin) to their aglycones (daidzein and genistein, respectively). However, S141, Bacillus subtilis 168, NCIB3610, and B. velezensis FZB42 hydrolyzed isoflavone glucosides into aglycones. A BLASTp search suggested that S141 and the other three strains shared four genes encoding ß-glucosidases corresponding to bglA, bglC, bglH, and gmuD in B. subtilis 168. The gene inactivation analysis of B. subtilis 168 revealed that bglC encoded the major ß-glucosidase, contributing about half of the total activity to hydrolyze isoflavone glycosides and that bglA, bglH, and gmuD, all barely committed to the hydrolysis of isoflavone glycosides. Thus, an unknown ß-glucosidase exists, and our genetic knowledge of ß-glucosidases was insufficient to evaluate the ability to hydrolyze isoflavone glycosides. Nevertheless, S141 could predominate in the soybean rhizosphere, releasing isoflavone aglycones to enhance soybean nodulation.


Assuntos
Glicosídeos , Isoflavonas , Glycine max , beta-Glucosidase/genética , Bacillus subtilis/genética
5.
Front Microbiol ; 14: 1131860, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876109

RESUMO

RpoN is an alternative sigma factor (sigma 54) that recruits the core RNA polymerase to promoters of genes. In bacteria, RpoN has diverse physiological functions. In rhizobia, RpoN plays a key role in the transcription of nitrogen fixation (nif) genes. The Bradyrhizobium sp. DOA9 strain contains a chromosomal (c) and plasmid (p) encoded RpoN protein. We used single and double rpoN mutants and reporter strains to investigate the role of the two RpoN proteins under free-living and symbiotic conditions. We observed that the inactivation of rpoNc or rpoNp severely impacts the physiology of the bacteria under free-living conditions, such as the bacterial motility, carbon and nitrogen utilization profiles, exopolysaccharide (EPS) production, and biofilm formation. However, free-living nitrogen fixation appears to be under the primary control of RpoNc. Interestingly, drastic effects of rpoNc and rpoNp mutations were also observed during symbiosis with Aeschynomene americana. Indeed, inoculation with rpoNp, rpoNc, and double rpoN mutant strains resulted in decreases of 39, 64, and 82% in the number of nodules, respectively, as well as a reduction in nitrogen fixation efficiency and a loss of the bacterium's ability to survive intracellularly. Taken together, the results show that the chromosomal and plasmid encoded RpoN proteins in the DOA9 strain both play a pleiotropic role during free-living and symbiotic states.

6.
Microbes Environ ; 38(1)2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935122

RESUMO

Cercospora leaf spot (CLS) is caused by Cercospora canescens and is one of the most important diseases of mungbean (Vigna radiata). Cercospora leaf spot may result in economic loss in production areas. The present study investigated the potential of Bacillus velezensis S141 as a biocontrol agent for C. canescens PAK1 growth on culture plates. Cell-free secretions from a dual culture of S141+PAK1 inhibited fungal growth more than those from a single culture of S141. The biocontrol efficiency of S141 against Cercospora leaf spot on mungbean was then evaluated by spraying. The disease severity of Cercospora leaf spot was significantly reduced in plants treated with S141, with a control efficiency of 83% after 2 days of infection. Comparative transcriptomics and qRT-PCR ana-lyses of S141 during C. canescens inhibition were performed to elucidate the antifungal mechanisms underlying its antifungal activity against Cercospora leaf spot. According to the differentially expressed genes, most up-regulated genes involved in the biosynthetic genes encoding enzymatic hydrolases, including protease, ß-glucanase, and N-acyl glucosaminase, were detected in strain S141 following its interaction. Moreover, genes related to secondary metabolites (surfactin, bacilysin, and bacillomycin D) were up-regulated. Collectively, these results suggest that S141 exhibited strong antifungal activity against C. canescens due to multiple enzymatic hydrolases and secondary metabolites. Therefore, the present study provides insights into the biological network responsible for the antifungal activity of B. velezensis S141 against C. canescens.


Assuntos
Bacillus , Vigna , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Vigna/microbiologia , Cercospora/metabolismo , Bacillus/genética , Doenças das Plantas/microbiologia
7.
Microbes Environ ; 37(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35676049

RESUMO

The symbiotic properties of rhizobial bacteria are driven by the horizontal gene transfer of symbiotic genes, which are located in symbiosis islands or on plasmids. The symbiotic megaplasmid pDOA9 of Bradyrhizobium sp. DOA9, carrying the nod, nif, fix, and type three secretion system (T3SS) genes, has been conjugatively transferred to different Bradyrhizobium strains. In the present study, non-nodulating B. cosmicum S23321, which shows a close phylogenetic relationship with Bradyrhizobium sp. DOA9, but lacks symbiotic properties, was used to carry pDOA9 (annotated as chimeric S2:pDOA9). The results obtained showed that pDOA9 conferred symbiotic properties on S23321; however, nodulation phenotypes varied among the DOA9, chimeric ORS278:pDOA9, and S2:pDOA9 strains even though they all carried symbiotic pDOA9 plasmid. S23321 appeared to gain symbiotic nodulation from pDOA9 by processing nodulation genes and broadening the host range. The present results also showed the successful formation of active nodules in Arachis hypogaea (Dalbergoid) and Vigna radiata (Millitoid) by chimeric S2:pDOA9, while Crotalaria juncea (Genistoid) and Macroptilium atropurpureum (Millitoid) formed nodule-like structures. The formation of nodules and nodule-like structures occurred in a nod factor-dependent manner because the nod factor-lacking strain (S2:pDOA9ΩnodB) completely abolished nodulation in all legumes tested. Moreover, T3SS carried by S2:pDOA9 exerted negative effects on symbiosis with Crotalaria juncea, which was consistent with the results obtained on DOA9. T3SS exhibited symbiotic compatibility with V. radiata when nodulated by S23321. These outcomes implied that pDOA9 underwent changes during legume evolution that broadened host specificity and the compatibility of nodulation in a manner that was dependent on the chromosomal background of the recipient as well as legume host restrictions.


Assuntos
Bradyrhizobium , Fabaceae , Bradyrhizobium/genética , Fabaceae/microbiologia , Filogenia , Nodulação/genética , Plasmídeos/genética , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética
8.
Pol J Microbiol ; 70(2): 257-271, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34349815

RESUMO

The development of rhizobial inoculants with increased resistance to abiotic stress is critical to mitigating the challenges related to climate change. This study aims at developing a soybean stress-tolerant Bradyrhizobium inoculant to be used under the mixed stress conditions of acidity, high temperature, and drought. Six isolates of Bradyrhizobium with high symbiotic performance on soybean were tested to determine their growth or survival abilities under in vitro conditions. The representative stress-tolerant Bradyrhizobium isolates 184, 188, and 194 were selected to test their ability to promote soybean growth under stress conditions compared to the type strain Bradyrhizobium diazoefficiens USDA110. The plant experiment indicated that isolate 194 performed better in symbiosis with soybean than other Bradyrhizobium strains under stress conditions. Based on the stress tolerance index, soybeans inoculated with isolate 194 showed a high growth performance and significantly better nodulation competition ability than USDA110 under several stress conditions. Interestingly, supplementation of sucrose in the culture medium significantly enhances the survival of the isolate and leads to improved plant biomass under various stress conditions. Analysis of the intra-cellular sugars of isolate 194 supplemented with sucrose showed the accumulation of compatible solutes, such as trehalose and glycerol, that may act as osmoprotectants. This study indicates that inoculation of stress-tolerant Bradyrhizobium together with sucrose supplementation in a medium could enhance bacterial survival and symbiosis efficiency under stress conditions. Although it can be applied for inoculant production, this strategy requires validation of its performance in field conditions before adopting this technology.


Assuntos
Bradyrhizobium/fisiologia , Meio Ambiente , Glycine max/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Estresse Fisiológico
9.
Sci Rep ; 11(1): 16604, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400661

RESUMO

Host-specific legume-rhizobium symbiosis is strictly controlled by rhizobial type III effectors (T3Es) in some cases. Here, we demonstrated that the symbiosis of Vigna radiata (mung bean) with Bradyrhizobium diazoefficiens USDA110 is determined by NopE, and this symbiosis is highly dependent on host genotype. NopE specifically triggered incompatibility with V. radiata cv. KPS2, but it promoted nodulation in other varieties of V. radiata, including KPS1. Interestingly, NopE1 and its paralogue NopE2, which exhibits calcium-dependent autocleavage, yield similar results in modulating KPS1 nodulation. Furthermore, NopE is required for early infection and nodule organogenesis in compatible plants. Evolutionary analysis revealed that NopE is highly conserved among bradyrhizobia and plant-associated endophytic and pathogenic bacteria. Our findings suggest that V. radiata and B. diazoefficiens USDA110 may use NopE to optimize their symbiotic interactions by reducing phytohormone-mediated ETI-type (PmETI) responses via salicylic acid (SA) biosynthesis suppression.


Assuntos
Bradyrhizobium/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Nodulação/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Vigna/microbiologia , Sequência de Bases , Bradyrhizobium/genética , Evolução Molecular , Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Bacterianos , Mutação , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Raízes de Plantas/microbiologia , RNA Bacteriano/biossíntese , RNA Bacteriano/genética , RNA de Plantas/biossíntese , RNA de Plantas/genética , Ácido Salicílico/metabolismo , Simbiose , Transcriptoma
11.
Sci Rep ; 11(1): 4874, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649428

RESUMO

The Bradyrhizobium vignae strain ORS3257 is an elite strain recommended for cowpea inoculation in Senegal. This strain was recently shown to establish symbioses on some Aeschynomene species using a cocktail of Type III effectors (T3Es) secreted by the T3SS machinery. In this study, using a collection of mutants in different T3Es genes, we sought to identify the effectors that modulate the symbiotic properties of ORS3257 in three Vigna species (V. unguiculata, V. radiata and V. mungo). While the T3SS had a positive impact on the symbiotic efficiency of the strain in V. unguiculata and V. mungo, it blocked symbiosis with V. radiata. The combination of effectors promoting nodulation in V. unguiculata and V. mungo differed, in both cases, NopT and NopAB were involved, suggesting they are key determinants for nodulation, and to a lesser extent, NopM1 and NopP1, which are additionally required for optimal symbiosis with V. mungo. In contrast, only one effector, NopP2, was identified as the cause of the incompatibility between ORS3257 and V. radiata. The identification of key effectors which promote symbiotic efficiency or render the interaction incompatible is important for the development of inoculation strategies to improve the growth of Vigna species cultivated in Africa and Asia.

12.
J Environ Manage ; 275: 111300, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871522

RESUMO

A growing concern on the deleterious effects of chemical inputs to the environment has been on the rise from the excessive use of chemical inputs leading to soil and water pollution, destruction to fauna and microbial communities, reduced soil fertility and increased crop disease susceptibility. In the Great Mekong Region (GMR), a large majority of the population relies on agriculture and faces severe challenges including decline in soil fertility, increased pests and diseases, leading to lower ecosystem productivity. In this region, over-dependence on chemical fertilizers also continues to impact negatively on soil health and the wider ecosystem. Agroecological practices, and beneficial microorganisms in particular, offer an affordable and sustainable alternative to mineral inputs for improved plant nutrition and soil health for optimal crop performance and sustainable production. Biofertilizers are a key component in integrated nutrient management as well as for increased economic benefits from reduced expenditure on chemical fertilizers, holistically leading to sustainable agriculture. To cope with the need for biofertilizer adoption for sustainable agricultural production, the countries in the GMR are putting efforts in promoting development and use of biofertilizers and making them available to farmers at affordable costs. Despite these efforts, farmers continue to use chemical fertilizers at high rates with the hope of increased yields instead of taking advantage of microbial products capable of providing plant nutrients while restoring or improving soil health. This study explored the current agricultural practices in the six countries in the GMR (China, Vietnam, Myanmar, Thailand, Cambodia and Lao PDR), the critical need for sustainable agroecological practices with a special emphasis on biofertilizers. We highlighted the current status, distribution, adoption and gaps of biofertilizer production in the GMR, in order to obtain an insight on the nature of biofertilizers, efficacy and production standards, adoption or lack of biofertilizers in the GMR.


Assuntos
Agricultura , Fertilizantes , Camboja , China , Tailândia , Vietnã
13.
Microbes Environ ; 35(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32727975

RESUMO

Bradyrhizobium sp. strain SUTN9-2 is a symbiotic and endophytic diazotrophic bacterium found in legume and rice plants and has the potential to promote growth. The present results revealed that SUTN9-2 underwent cell enlargement, increased its DNA content, and efficiently performed nitrogen fixation in response to rice extract. Some factors in rice extract induced the expression of cell cycle and nitrogen fixation genes. According to differentially expressed genes (DEGs) from the transcriptomic analysis, SUTN9-2 was affected by rice extract and the deletion of the bclA gene. The up-regulated DEGs encoding a class of oxidoreductases, which act with oxygen atoms and may have a role in controlling oxygen at an appropriate level for nitrogenase activity, followed by GroESL chaperonins are required for the function of nitrogenase. These results indicate that following its exposure to rice extract, nitrogen fixation by SUTN9-2 is induced by the collective effects of GroESL and oxidoreductases. The expression of the sensitivity to antimicrobial peptides transporter (sapDF) was also up-regulated, resulting in cell differentiation, even when bclA (sapDF) was mutated. This result implies similarities in the production of defensin-like antimicrobial peptides (DEFs) by rice and nodule-specific cysteine-rich (NCR) peptides in legume plants, which affect bacterial cell differentiation.


Assuntos
Bradyrhizobium/citologia , Bradyrhizobium/metabolismo , Fixação de Nitrogênio , Oryza/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bradyrhizobium/genética , Ciclo Celular/genética , Endófitos , Regulação da Expressão Gênica , Mutação , Fixação de Nitrogênio/efeitos dos fármacos , Fixação de Nitrogênio/genética , Oryza/química , Oryza/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Simbiose , Transcriptoma/efeitos dos fármacos
14.
Microbes Environ ; 35(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32611950

RESUMO

The rhizobial type III secretion system secretes effector proteins into host plant cells, which may either promote or inhibit symbiosis with legumes. We herein demonstrated that the type III secretion system of Bradyrhizobium sp. SUTN9-2 obstructed symbiosis with Lotus japonicus Miyakojima, L. japonicus Gifu, and Lotus burttii. A mutant of SUTN9-2 that is unable to secrete effector proteins showed better nodulation and plant growth promotion than wild-type SUTN9-2 when paired with these Lotus spp. We propose that SUTN9-2 is a useful strain for understanding the mechanisms by which effector proteins obstruct symbiosis between Bradyrhizobium and Lotus spp.


Assuntos
Bradyrhizobium/fisiologia , Lotus/microbiologia , Simbiose , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Lotus/classificação , Lotus/crescimento & desenvolvimento , Mutação , Nodulação , Nódulos Radiculares de Plantas/classificação , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Sistemas de Secreção Tipo III/genética
15.
Microbes Environ ; 35(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32554939

RESUMO

Bacteria exhibiting 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, which inhibits the biosynthesis of ethylene in higher plants, promote plant growth through the degradation of ethylene precursors, such as ACC. ACC deaminase activity in Bradyrhizobium sp. SUTN9-2 was enhanced by genetic engineering and adaptive laboratory evolution (ALE)-based methods. The transferal of a plasmid containing the acdR and acdS genes into SUTN9-2 was genetic engineering improved, while the ALE method was performed based on the accumulation of an adaptive bacterial population that continuously grew under specified growth conditions for a long time. ACC deaminase enzyme activity was 8.9-fold higher in SUTN9-2:pMG103::acdRS and 1.4-fold higher in SUTN9-2 (ACCDadap) than in the wild-type strain. The effects of increased activity were examined in the host plant (Vigna radiata (L.) R.Wilczek SUT1). The improved strains enhanced nodulation in early stage of plant growth. SUTN9-2:pMG103::acdRS also maintained nitrogen fixation under water deficit conditions and increased the plant biomass after rehydration. Changes in nucleotides and amino acids in the AcdS protein of SUTN9-2 (ACCDadap) were then investigated. Some nucleotides predicted to be located in the ACC-binding site were mutated. These mutations may have increased ACC deaminase activity, which enhanced both symbiotic interactions and drought tolerance and promoted recovery after rehydration more than lower ACC deaminase activity. Adaptive evolution represents a promising strategy for further applications in the field.


Assuntos
Bradyrhizobium/fisiologia , Carbono-Carbono Liases/metabolismo , Simbiose , Vigna/microbiologia , Água/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Carbono-Carbono Liases/química , Carbono-Carbono Liases/genética , Etilenos/metabolismo , Mutação , Fixação de Nitrogênio , Nodulação , Conformação Proteica , Vigna/crescimento & desenvolvimento , Vigna/metabolismo
16.
Microorganisms ; 8(5)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392716

RESUMO

The objective of this research was to evaluate the PGPR effect on nodulation and nitrogen-fixing efficiency of soybean (Glycine max (L.) Merr.) by co-inoculation with Bradyrhizobium diazoefficiens USDA110. Co-inoculation of Bacillus velezensis S141 with USDA110 into soybean resulted in enhanced nodulation and N2-fixing efficiency by producing larger nodules. To understand the role of S141 on soybean and USDA110 symbiosis, putative genes related to IAA biosynthesis were disrupted, suggesting that co-inoculation of USDA110 with S141ΔyhcX reduces the number of large size nodules. It was revealed that yhcX may play a major role in IAA biosynthesis in S141 as well as provide a major impact on soybean growth promotion. The disruption of genes related to cytokinin biosynthesis and co-inoculation of USDA110 with S141ΔIPI reduced the number of very large size nodules, and it appears that IPI might play an important role in nodule size of soybean-Bradyrhizobium symbiosis. However, it was possible that not only IAA and cytokinin but also some other substances secreted from S141 facilitate Bradyrhizobium to trigger bigger nodule formation, resulting in enhanced N2-fixation. Therefore, the ability of S141 with Bradyrhizobium co-inoculation to enhance soybean N2-fixation strategy could be further developed for supreme soybean inoculants.

17.
Microbes Environ ; 34(4): 393-401, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31597890

RESUMO

The nifV gene encodes homocitrate synthase, the enzyme that catalyzes the formation of homocitrate, which is essential for arranging the FeMo-cofactor in the catalytic center of nitrogenase. Some host plants, such as Lotus japonicus, supply homocitrate to their symbionts, in this case, Mesorhizobium loti, which lacks nifV. In contrast, Bradyrhizobium ORS285, a symbiont of Aeschynomene cross-inoculation (CI) groups 2 and 3, requires nifV for symbiosis with Aeschynomene species that belong to CI group 3, and some species belonging to CI group 2. However, it currently remains unclear whether rhizobial nifV is required for symbiosis with Aeschynomene species belonging to CI group 1 or with other legumes. We generated nifV-disruption (ΔnifV) mutants of two wide-host-range rhizobia, Bradyrhizobium SUTN9-2 and DOA9, to investigate whether they require nifV for symbiosis. Both ΔnifV mutant strains showed significantly less nitrogenase activity in a free-living state than the respective wild-type strains. The symbiotic phenotypes of SUTN9-2, DOA9, and their ΔnifV mutants were examined with four legumes, Aeschynomene americana, Stylosanthes hamata, Indigofera tinctoria, and Desmodium tortuosum. nifV was required for the efficient symbiosis of SUTN9-2 with A. americana (CI group 1), but not for that of DOA9. SUTN9-2 established symbiosis with all three other legumes; nifV was required for symbiosis with I. tinctoria and D. tortuosum. These results suggest that, in addition to Aeschynomene CI groups 2 and 3, CI group 1 and several other legumes require the rhizobial nifV for symbiosis.


Assuntos
Proteínas de Bactérias/metabolismo , Bradyrhizobium/fisiologia , Fabaceae/microbiologia , Oxo-Ácido-Liases/metabolismo , Simbiose , Proteínas de Bactérias/genética , Bradyrhizobium/classificação , Bradyrhizobium/enzimologia , Bradyrhizobium/genética , Fabaceae/classificação , Fabaceae/crescimento & desenvolvimento , Especificidade de Hospedeiro , Mutação , Fixação de Nitrogênio , Nitrogenase/metabolismo , Oxo-Ácido-Liases/genética , Filogenia , Nódulos Radiculares de Plantas/classificação , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia
18.
Environ Microbiol ; 21(9): 3442-3454, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31077522

RESUMO

The lateral transfer of symbiotic genes converting a predisposed soil bacteria into a legume symbiont has occurred repeatedly and independently during the evolution of rhizobia. We experimented the transfer of a symbiotic plasmid between Bradyrhizobium strains. The originality of the DOA9 donor is that it harbours a symbiotic mega-plasmid (pDOA9) containing nod, nif and T3SS genes while the ORS278 recipient has the unique property of inducing nodules on some Aeschynomene species in the absence of Nod factors (NFs). We observed that the chimeric strain ORS278-pDOA9* lost its ability to develop a functional symbiosis with Aeschynomene. indica and Aeschynomene evenia. The mutation of rhcN and nodB led to partial restoration of nodule efficiency, indicating that T3SS effectors and NFs block the establishment of the NF-independent symbiosis. Conversely, ORS278-pDOA9* strain acquired the ability to form nodules on Crotalaria juncea and Macroptillium artropurpureum but not on NF-dependent Aeschynomene (A. afraspera and A. americana), suggesting that the ORS278 strain also harbours incompatible factors that block the interaction with these species. These data indicate that the symbiotic properties of a chimeric rhizobia cannot be anticipated due to new combination of symbiotic and non-symbiotic determinants that may interfere during the interaction with the host plant.

19.
Microbiologyopen ; 8(7): e00781, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30628192

RESUMO

This study supports the idea that the evolution of type III secretion system (T3SS) is one of the factors that controls Vigna radiata-bradyrhizobia symbiosis. Based on phylogenetic tree data and gene arrangements, it seems that the T3SSs of the Thai bradyrhizobial strains SUTN9-2, DOA1, and DOA9 and the Senegalese strain ORS3257 may share the same origin. Therefore, strains SUTN9-2, DOA1, DOA9, and ORS3257 may have evolved their T3SSs independently from other bradyrhizobia, depending on biological and/or geological events. For functional analyses, the rhcJ genes of ORS3257, SUTN9-2, DOA9, and USDA110 were disrupted. These mutations had cultivar-specific effects on nodulation properties. The T3SSs of ORS3257 and DOA9 showed negative effects on V. radiata nodulation, while the T3SS of SUTN9-2 showed no effect on V. radiata symbiosis. In the roots of V. radiata CN72, the expression levels of the PR1 gene after inoculation with ORS3257 and DOA9 were significantly higher than those after inoculation with ORS3257 ΩT3SS, DOA9 ΩT3SS, and SUTN9-2. The T3Es from ORS3257 and DOA9 could trigger PR1 expression, which ultimately leads to abort nodulation. In contrast, the T3E from SUTN9-2 reduced PR1 expression. It seems that the mutualistic relationship between SUTN9-2 and V. radiata may have led to the selection of the most well-adapted combination of T3SS and symbiotic bradyrhizobial genotype.

20.
Front Microbiol ; 9: 1644, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30087663

RESUMO

The Bradyrhizobium sp. DOA9 strain displays the unusual properties to have a symbiotic plasmid and to fix nitrogen during both free-living and symbiotic growth. Sequence genome analysis shows that this strain contains the structural genes of dinitrogenase (nifDK) and the nifA regulatory gene on both the plasmid and chromosome. It was previously shown that both nifDK clusters are differentially expressed depending on growth conditions, suggesting different mechanisms of regulation. In this study, we examined the functional regulatory role of the two nifA genes found on the plasmid (nifAp) and chromosome (nifAc) that encode proteins with a moderate level of identity (55%) and different structural architectures. Using gusA (ß-glucuronidase) reporter strains, we showed that both nifA genes were expressed during both the free-living and symbiotic growth stages. During symbiosis with Aeschynomene americana, mutants in only one nifA gene were not altered in their symbiotic properties, while a double nifA mutant was drastically impaired in nitrogen fixation, indicating that the two NifA proteins are functionally redundant during this culture condition. In contrast, under in vitro conditions, the nifAc mutant was unable to fix nitrogen, and no effect of the nifAp mutation was detected, indicating that NifAc is essential to activate nif genes during free-living growth. In accordance, the nitrogenase fixation deficiency of this mutant could be restored by the introduction of nifAc but not by nifAp or by two chimeric nifA genes encoding hybrid proteins with the N-terminus part of NifAc and the C-terminus of NifAp. Furthermore, transcriptional analysis by RT-qPCR of the WT and two nifA mutant backgrounds showed that NifAc and NifAp activated the expression of both chromosome and plasmid structural nifDK genes during symbiosis, while only NifAc activated the expression of nifDKc during free-living conditions. In summary, this study provides a better overview of the complex mechanisms of regulation of the nitrogenase genes in the DOA9 strain that involve two distinct NifA proteins, which are exchangeable during symbiosis for the activation of nif genes but not during free-living growth where NifAc is essential for the activation of nifDKc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...