Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Vet Sci ; 11(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38535861

RESUMO

The significance of Trypanosoma equiperdum as the causative agent of dourine cannot be understated, especially given its high mortality rate among equids. International movement of equids should be subject to thorough health checks and screenings to ensure that animals are not infected with Trypanosoma equiperdum. This involves the implementation of quarantine protocols, testing procedures, and the issuance of health certificates to certify the health status of the animals. Three proteins, the peptidyl-prolyl cis-trans isomerase (A0A1G4I8N3), the GrpE protein homolog (A0A1G4I464) and the transport protein particle (TRAPP) component, putative (A0A1G4I740) (UniProt accession numbers SCU68469.1, SCU66661.1 and SCU67727.1), were identified as unique to T. equiperdum by bioinformatics analysis. The proteins were expressed as recombinant proteins and tested using an indirect ELISA and immunoblotting test with a panel of horse positive and negative sera for dourine. The diagnostic sensitivity, specificity and accuracy of the i-ELISAs were 86.7%, 53.8% and 59.0% for A0A1G4I8N3; 53.3%, 58.7% and 57.9% for A0A1G4I464; and 73.3%, 65.0% and 66.3% for A0A1G4I740, respectively, while the diagnostic sensitivity, specificity and accuracy of immunoblotting were 86.7%, 92.5% and 91.6% for A0A1G4I8N3; 46.7%, 81.3% and 75.8% for A0A1G4I464; and 80.0%, 63.8% and 66.3% for A0A1G4I740. Among the three proteins evaluated in the present work, A0A1G4I8N3 provided the best results when tested by immunoblotting; diagnostic application of this protein should be further investigated using a greater number of positive and negative sera.

2.
Front Microbiol ; 14: 1271787, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37876777

RESUMO

Preventing L. monocytogenes infection is crucial for food safety, considering its widespread presence in the environment and its association with contaminated RTE foods. The pathogen's ability to persist under adverse conditions, for example, in food processing facilities, is linked to virulence and resistance mechanisms, including biofilm formation. In this study, the protein expression patterns of two L. monocytogenes 1/2a strains, grown under environmental stressors (mild acidic pH, thermal abuse, and high concentration of NaCl), were investigated. Protein identification and prediction were performed by nLC-ESI-MS/MS and nine different bioinformatic software programs, respectively. Gene enrichment analysis was carried out by STRING v11.05. A total of 1,215 proteins were identified, of which 335 were non-cytosolic proteins and 265 were immunogenic proteins. Proteomic analysis revealed differences in protein expression between L. monocytogenes strains in stressful conditions. The two strains exhibited unique protein expression profiles linked to stress response, virulence, and pathogenesis. Studying the proteomic profiles of such microorganisms provides information about adaptation and potential treatments, highlighting their genetic diversity and demonstrating the utility of bioinformatics and proteomics for a broader analysis of pathogens.

3.
Microorganisms ; 11(9)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37764006

RESUMO

Canine brucellosis caused by Brucella canis, is an infectious disease affecting dogs and wild Canidae. Clinical diagnosis is challenging, and laboratory testing is crucial for a definitive diagnosis. Various serological methods have been described, but their accuracy is uncertain due to limited validation studies. The present study aimed to evaluate the performances of three serological tests for the diagnosis of B. canis in comparison with bacterial isolation (gold standard), in order to establish a protocol for the serological diagnosis of canine brucellosis. A panel of sera from naturally infected dogs (n = 61), from which B. canis was isolated, and uninfected dogs (n = 143), negative for B. canis isolation, were tested using microplate serum agglutination (mSAT), complement fixation performed using the Brucella ovis antigen (B. ovis-CFT), and a commercial immunofluorescence assay (IFAT). The sensitivity and specificity of the three serological methods were, respectively, the following: 96.7% (95% CI 88.8-98.7%) and 92.3 (95% CI 86.7-95.1%) for mSAT; 96.7% (95% CI 88.8-98.7%) and 96.5 (95% CI 92.1-98.2%) for B. ovis-CFT; 98.4% (95% CI 91.3-99.4%) and 99.3 (95% CI 96.2-99.8%) for IFAT. The use in of the three methods in parallel, combined with bacterial isolation and molecular methods, could improve the diagnosis of the infection in dogs.

4.
Pathogens ; 12(8)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37623994

RESUMO

Brucella ceti infections have been increasingly reported in cetaceans. In this study, we analyzed all cases of B. ceti infection detected in striped dolphins stranded along the Italian coastline between 2012 and 2021 (N = 24). We focused on the pathogenic role of B. ceti through detailed pathological studies, and ad hoc microbiological, biomolecular, and serological investigations, coupled with a comparative genomic analysis of the strains. Neurobrucellosis was observed in 20 animals. The primary histopathologic features included non-suppurative meningoencephalitis (N = 9), meningitis (N = 6), and meningoencephalomyelitis (N = 5), which was also associated with typical lesions in other tissues (N = 8). Co-infections were detected in more than half of the cases, mostly involving Cetacean Morbillivirus (CeMV). The 24 B. ceti isolates were assigned primarily to sequence type 26 (ST26) (N = 21) and, in a few cases, ST49 (N = 3). The multilocus sequence typing (cgMLST) based on whole genome sequencing (WGS) data showed that strains from Italy clustered into four genetically distinct clades. Plotting these clades onto a geographic map suggests a link between their phylogeny and the topographical distribution. These results support the role of B. ceti as a primary neurotropic pathogen for striped dolphins and highlight the utility of WGS data in understanding the evolution of this emerging pathogen.

5.
Microorganisms ; 11(8)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37630638

RESUMO

Brucella RB51 is a live modified vaccine. Its use in water buffalo has been proposed using a vaccination protocol different to that used for cattle, but knowledge of the long-term effects of RB51 vaccination in this species remains incomplete. The aim of the study was to evaluate the safety and kinetics of antibody responses in water buffaloes vaccinated according to the protocol described for the bovine species in the WOAH Manual, modified with the use of a triple dose. Water buffaloes were vaccinated with the vaccine RB51. A booster vaccination was administered at 12 months of age. When turning 23-25 months old, female animals were induced to pregnancy. RB51-specific antibodies were detected and quantified using a CFT based on the RB51 antigen. Vaccinated animals showed a positive serological reaction following each vaccine injection, but titers and the duration of the antibody differed among animals. For 36 weeks after booster vaccination, the comparison of CFT values between vaccinated and control groups remained constantly significant. Afterwards, antibody titers decreased. No relevant changes in antibody response were recorded during pregnancy or lactation. In conclusion, results indicated that the vaccination schedule applied is safe and allows for vaccinated and unvaccinated controls to be discriminated between for up to 8 months after booster vaccination.

6.
Proteomics Clin Appl ; 17(6): e2200116, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37532634

RESUMO

PURPOSE: Brucella canis is pathogenic for dogs and humans. Serological diagnosis is a cost-effective approach for disease surveillance, but a major drawback of current serological tests is the cross-reactivity with other bacteria that results in false positive reactions. Development of indirect tests with improved sensitivity and specificity that use selected B. canis proteins instead of the whole antigen remain a priority. EXPERIMENTAL DESIGN: A western blotting assay was developed to define the serum antibody patterns associated to infection using a panel of positive and negative dog sera. B. canis positive sera recognized immunogenic bands ranging from 7 to 30 kDa that were then submitted to ESI-LC-MS/MS and analyzed by bioinformatics tools. RESULTS: A total of 398 B. canis proteins were identified. Bioinformatics tools identified 16 non cytoplasmic immunogenic proteins predicted as non-homologous with the most important Brucella cross-reactive bacteria and nine B. canis proteins non-homologous to B. ovis; among the latter, one resulted non-homologous to B. melitensis. Data are available via ProteomeXchange with identifier PXD042682. CONCLUSIONS AND CLINICAL RELEVANCE: The western blotting test developed was able to distinguish between infected and non-infected animals and may serve as a confirmatory test for the serological diagnosis of B. canis. The mass spectrometry and in silico results lead to the identification of specific candidate antigens that pave the way for the development of more accurate indirect diagnostic tests.


Assuntos
Brucelose , Proteômica , Animais , Cães , Anticorpos Antibacterianos , Antígenos de Bactérias/análise , Brucelose/diagnóstico , Brucelose/veterinária , Brucelose/microbiologia , Cromatografia Líquida , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/veterinária , Espectrometria de Massas em Tandem
7.
Foods ; 12(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37297410

RESUMO

Listeria monocytogenes is a foodborne pathogen that is ubiquitous and largely distributed in food manufacturing environments. It is responsible for listeriosis, a disease that can lead to significant morbidity and fatality in immunocompromised patients, pregnant women, and newborns. Few reports have been published about proteome adaptation when L. monocytogenes is cultivated in stress conditions. In this study, we applied one-dimensional electrophoresis and 2D-PAGE combined with tandem mass spectrometry to evaluate proteome profiling in the following conditions: mild acid, low temperature, and high NaCl concentration. The total proteome was analyzed, also considering the case of normal growth-supporting conditions. A total of 1,160 proteins were identified and those related to pathogenesis and stress response pathways were analyzed. The proteins involved in the expression of virulent pathways when L. monocytogenes ST7 strain was grown under different stress conditions were described. Certain proteins, particularly those involved in the pathogenesis pathway, such as Listeriolysin regulatory protein and Internalin A, were only found when the strain was grown under specific stress conditions. Studying how L. monocytogenes adapts to stress can help to control its growth in food, reducing the risk for consumers.

8.
Monoclon Antib Immunodiagn Immunother ; 41(4): 181-187, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36027041

RESUMO

Monoclonal antibodies (MAbs) against epizootic hemorrhagic disease virus (EHDV) were produced by immunizing BALB/c mice with rec-VP7-EHDV2; 66 clones producing MAbs able to recognize the VP7-EHDV with a strong reaction were obtained and tested in indirect enzyme-linked immunosorbent assay (i-ELISA) against the whole epizootic hemorrhagic disease (EHD) virus serotype 2; potential cross-reactions with related orbiviruses, as Bluetongue virus (BTV) and African horse sickness virus (AHSV), were investigated as well by i-ELISA, Western blot, and immunofluorescence. Fifty-three MAbs were specific for EHDV (VP7 recombinant protein and whole virus) and 13 reacted also with the VP7 of BTV. None of the MAbs reacted with AHSV. MAbs specific for EHDV were further characterized in a competitive ELISA (c-ELISA): 20 among them were found useful to develop a c-ELISA for the detection of antibodies against EHDV in bovine sera. The availability of this extensive set of MAbs provides the opportunity to develop a c-ELISA for the serological diagnosis of EHDV and to tune new methods for the isolation and identification of the virus in biological samples and cell cultures. The experimentation protocol was approved by the Italian Ministry of Health (number 639/2018-PR, Resp. to Prot. BDF16.13#295833199#).


Assuntos
Vírus Bluetongue , Vírus da Doença Hemorrágica Epizoótica , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Western Blotting , Bovinos , Ensaio de Imunoadsorção Enzimática , Camundongos
9.
Proteomics ; 22(18): e2200082, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35916071

RESUMO

Listeria monocytogenes is one of the main foodborne pathogens worldwide. Although its response to stress conditions has been extensively studied, it is still present in the food processing environments and is a concern for consumers. To investigate how this microorganism adapts its proteome in mild stress conditions, a combined proteomics and bioinformatics approach was used to characterize the immunogenic protein profile of a sequence type 7 (ST7) strain that caused severe listeriosis outbreaks in central Italy. Extracted proteins were analyzed by immunoblotting using positive sera against L. monocytogenes and nLC-ESI-MS/MS, and all data were examined by five software to predict subcellular localization (SCL). A total of 226 proteins were extracted from the bands of interest, 58 of which were classified as potential immunogenic antigens. Compared to control cells grown under optimal conditions, six proteins, some of which under-described, were expressed under mild acid and salt stress conditions and/or at 12°C. In particular, adaptation and shaping of the proteome mainly involved cell motility at 12°C without acid and salt stress, whereas the combination of the same temperature with mild acid and salt stress induced a response concerning carbohydrate metabolism, oxidative stress, and DNA repair. Raw data are available via ProteomeXchange with identifier PXD033519.


Assuntos
Listeria monocytogenes , Ácidos , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Proteoma/metabolismo , Estresse Salino , Espectrometria de Massas em Tandem
10.
Pathogens ; 11(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35889993

RESUMO

The isolation of B. abortus RB51 vaccine strain from a milk sample in a water buffalo farm in southern Italy emphasizes the risk to public health of consuming contaminated milk or milk products following illegal vaccination.

11.
Vet Ital ; 58(1): 5-23, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-35766163

RESUMO

Brucellosis is a contagious disease caused by bacteria of the genus Brucella, which can affect different animal species. Dogs may occasionally be infected with B. abortus, B. melitensis or B. suis, or by the endemic form of the disease, caused by B. canis. Among the brucellosis­affecting domestic animals, that of the dog is certainly the least frequent, but also the least studied. Canine brucellosis due to B. canis represents the dog­specific brucellosis, both because it is the main susceptible animal species, and because it constitutes its fundamental reservoir of infection. The disease can also affect humans, although its course does not assume the characteristics of severity typical of the infection determined by the 'classical' species of the genus Brucella. In Italy, there are frequent imports of dogs from countries where the disease is present, often with non­controlled movements and without sanitary controls. Considering that the zoonotic potential of the disease can be favored by the close cohabitation between man and dog, which occurs especially in urban environments, canine brucellosis has to be regarded as a public health problem susceptible to introduction and spread in the Italian territory.


Assuntos
Brucella canis , Brucella , Brucelose , Doenças do Cão , Masculino , Cães , Animais , Humanos , Doenças do Cão/microbiologia , Brucelose/diagnóstico , Brucelose/veterinária , Brucelose/epidemiologia , Animais Domésticos
12.
Animals (Basel) ; 12(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35625150

RESUMO

Brucella ceti, a zoonotic pathogen of major concern to cetacean health and conservation, is responsible for severe meningo-encephalitic/myelitic lesions in striped dolphins (Stenella coeruleoalba), often leading to their stranding and death. This study investigated, for the first time, the cellular prion protein (PrPc) expression in the brain tissue from B. ceti-infected, neurobrucellosis-affected striped dolphins. Seven B. ceti-infected, neurobrucellosis-affected striped dolphins, found stranded along the Italian coastline (6) and in the Canary Islands (1), were investigated, along with five B. ceti-uninfected striped dolphins from the coast of Italy, carrying no brain lesions, which served as negative controls. Western Blot (WB) and immunohistochemistry (IHC) with an anti-PrP murine monoclonal antibody were carried out on the brain parenchyma of these dolphins. While PrPc IHC yielded inconclusive results, a clear-cut PrPc expression of different intensity was found by means of WB analyses in the brain tissue of all the seven herein investigated, B. ceti-infected and neurobrucellosis-affected cetacean specimens, with two dolphins stranded along the Italian coastline and one dolphin beached in Canary Islands also exhibiting a statistically significant increase in cerebral PrPc expression as compared to the five Brucella spp.-negative control specimens. The significantly increased PrPc expression found in three out of seven B. ceti-infected, neurobrucellosis-affected striped dolphins does not allow us to draw any firm conclusion(s) about the putative role of PrPc as a host cell receptor for B. ceti. Should this be the case, an upregulation of PrPc mRNA in the brain tissue of neurobrucellosis-affected striped dolphins could be hypothesized during the different stages of B. ceti infection, as previously shown in murine bone marrow cells challenged with Escherichia coli. Noteworthy, the inflammatory infiltrates seen in the brain and in the cervico-thoracic spinal cord segments from the herein investigated, B. ceti-infected and neurobrucellosis-affected striped dolphins were densely populated by macrophage/histiocyte cells, often harboring Brucella spp. antigen in their cytoplasm, similarly to what was reported in macrophages from mice experimentally challenged with B. abortus. Notwithstanding the above, much more work is needed in order to properly assess the role of PrPc, if any, as a host cell receptor for B. ceti in striped dolphins.

13.
Pathogens ; 10(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34832627

RESUMO

Aim of this study is to report a laboratory investigation performed following the isolation of Brucella ovis, causing ovine epididymitis, in a traditional sheep farm in Sicily (South Italy). This disease represents a newly emerging risk for Italian livestock and is listed among diseases of EU priority (EU Reg 2016/429). Blood samples from 56 rams and 143 ewes were analyzed by both Enzyme-Linked Immunosorbent Assay (ELISA) and Complement Fixation Test (CFT). Genital swabs from all rams and 15 lactating ewes were collected to perform real-time PCR. Eighteen serologically positive rams were slaughtered and postmortem-inspected. Samples of testicle, epididymis, lymph nodes, and urine were also collected in order to perform microbiological, molecular, and histopathological analysis. Twelve slaughtered rams showed anatomo-pathological lesions. Real-time PCR for B. ovis BOV_A0504 gene was positive for 13 testicles and epididymis and 11 urine while B. ovis was isolated from epididymis and testicles of 7 slaughtered rams. This is the first exhaustive laboratory report of a microbiological, molecular, and serological pattern of the disease in sheep in Italy. Despite the impact on health and animal welfare, the epidemiology of B. ovis infection is still unknown, particularly in our country where the disease is considered endemic.

14.
Vet Ital ; 57: 3, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34641664

RESUMO

Brucella canis has been isolated for the first time in Italy in a commercial breeding kennel. It was diagnosed after a deep investigation related to the onset of reproductive disorders. Animals were tested with direct and indirect techniques. The agent was first detected in two Chihuahua aborted foetuses by direct culture. Further, it was also isolated from blood samples of dogs hosted in the kennel, which also showed reaction to conventional serological tests (microplate serum agglutination test). The isolates were identified as B. canis by standard microbiological methods and a Bruce­ladder multiplex PCR. To investigate the genomic diversity, whole genome sequencing was used, applying the core genome Multilocus Sequence Typing (cgMLST ). In a first round of serological testing performed on 598 animals, 269 (46.1%) tested positive. In the second round of laboratory testing carried out 4­5 weeks apart, the number of serologically positive dogs was 241 out of 683 tested (35.3%), while the number of dogs positive to isolation was 68 out of 683 tested (10.0%). The PCR showed a lack of sensitivity when compared to direct isolation. The epidemiological investigation did not identify the source of the infection, given the time elapsed from the onset of abortions to the definitive diagnosis of B. canis infection in the kennel. The genomic analyses featured the strains as ST21 and, according to the cgMLST, revealed the presence of a tight cluster with a maximum diversity of four allelic differences. The observed limited genomic variation, largely within the known outbreak cut­offs, suggests that the outbreak herein described was likely caused by a single introduction. Moreover, in a broader scale comparison using the public available genomes, we found that the closest genome, isolated in China, differed by more than 50 alleles making not possible to find out the likely origin of the outbreak. The lack of updated data on B. canis genome sequences in the public databases, together with the limited information retrieved from the epidemiological investigations on the outbreak, hampered identification of the source of B. canis infection.

15.
One Health ; 13: 100253, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33997237

RESUMO

Brucellosis caused by Brucella melitensis is a zoonosis frequently reported in the Mediterranean and Middle-East regions and responsible for important economic losses and reduced animal welfare. To date, current strategies applied to control or eradicate the disease relies on diagnostic tests that suffer from limited specificity in non-vaccinated animals; while prophylactic measures, when applied, use a live attenuated bacterial strain characterized by residual virulence on adult pregnant animals and difficulties in distinguishing vaccinated from infected animals. To overcome these issues, studies are desired to elucidate the bacterial biology and the pathogenetic mechanisms of both the vaccinal strain and the pathogenic strains. Proteomics has a potential in tackling issues of One-Health concern; here, we employed label-free shotgun proteomics to investigate the protein repertoire of the vaccinal strain B. melitensis Rev.1 and compare it with the proteome of the Brucella melitensis 16 M, a reference strain representative of B. melitensis field strains. Comparative proteomics profiling underlines common and diverging traits between the two strains. Common features suggest the potential biochemical routes responsible for the residual virulence of the vaccinal strain, whilst the diverging traits are suggestive biochemical signatures to be further investigated to provide an optimized diagnostic capable of discriminating the vaccinated from infected animals. The data presented in this study are openly available in PRIDE data repository at https://www.ebi.ac.uk/pride/, reference number PXD022472.

16.
Microorganisms ; 8(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271977

RESUMO

This paper reports the results of serological tests for the detection of antibodies against Leishmania spp. in Abruzzo and Molise regions from 2009 to 2014, with the aim of evaluating the presence and distribution of canine leishmaniasis. Data were extracted from the Laboratory Information Management System (LIMS) of the Istituto Zooprofilattico Sperimentale of Abruzzo and Molise, and then the dog identification numbers were matched with those stored in the Canine Registries of the two regions to get information about the age of dogs at time of testing. Dogs were considered positive when having an IFAT (Indirect Fluorescent Antibody Test) titer ≥1:80. In total, 41,631 dogs were tested, 85.3% from Abruzzo and 14.7% from Molise. At the provincial level, the percentage of positive dogs ranged from 5.2% (L'Aquila, Abruzzo region) to 21.8% (Campobasso, Molise region). Findings are consistent with the hypothesis that in the coastal areas, the relationships between the host, the vector, and the agent are more favorable for the spreading of CanL, and it seems that densely populated urban internal areas have less favorable conditions. Being a dog hosted in a kennel seems not to be a factor increasing the probability that dogs show positivity, even in long-term sheltering conditions.

18.
PLoS One ; 15(10): e0240178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33007030

RESUMO

Brucella ceti infections have been increasingly reported in cetaceans, although a very limited characterization of Mediterranean Brucella spp. isolates has been previously reported and relatively few data exist about brucellosis among cetaceans in Italy. To address this gap, we studied 8 cases of B. ceti infection in striped dolphins (Stenella coeruleoalba) stranded along the Italian coastline from 2012 to 2018, investigated thanks to the Italian surveillance activity on stranded cetaceans. We focused on cases of stranding in eastern and western Italian seas, occurred along the Apulia (N = 6), Liguria (N = 1) and Calabria (N = 1) coastlines, through the analysis of gross and microscopic findings, the results of microbiological, biomolecular and serological investigations, as well as the detection of other relevant pathogens. The comparative genomic analysis used whole genome sequences of B. ceti from Italy paired with the publicly available complete genomes. Pathological changes consistent with B. ceti infection were detected in the central nervous system of 7 animals, showing non-suppurative meningoencephalitis. In 4 cases severe coinfections were detected, mostly involving Dolphin Morbillivirus (DMV). The severity of B. ceti-associated lesions supports the role of this microbial agent as a primary neurotropic pathogen for striped dolphins. We classified the 8 isolates into the common sequence type 26 (ST-26). Whole genome SNP analysis showed that the strains from Italy clustered into two genetically distinct clades. The first clade comprised exclusively the isolates from Ionian and Adriatic Seas, while the second one included the strain from the Ligurian Sea and those from the Catalonian coast. Plotting these clades onto the geographic map suggests a link between their phylogeny and topographical distribution. These results represent the first extensive characterization of B. ceti isolated from Italian waters reported to date and show the usefulness of WGS for understanding of the evolution of this emerging pathogen.


Assuntos
Brucella/fisiologia , Oceanos e Mares , Stenella/microbiologia , Animais , Sistema Nervoso Central/microbiologia , Sistema Nervoso Central/patologia , Geografia , Itália , Funções Verossimilhança
19.
Microb Genom ; 6(11)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33030422

RESUMO

Ovine and caprine brucellosis, caused by Brucella melitensis, is one of the world's most widespread zoonoses and is a major cause of economic losses in domestic ruminant production. In Italy, the disease remains endemic in several southern provinces, despite an ongoing brucellosis eradication programme. In this study, we used whole-genome sequencing to detail the genetic diversity of circulating strains, and to examine the origins of the predominant sub-lineages of B. melitensis in Italy. We reconstructed a global phylogeny of B. melitensis, strengthened by 339 new whole-genome sequences, from Italian isolates collected from 2011 to 2018 as part of a national livestock surveillance programme. All Italian strains belonged to the West Mediterranean lineage, which further divided into two major clades that diverged roughly between the 5th and 7th centuries. We observed that Sicily serves as a brucellosis burden hotspot, giving rise to several distinct sub-lineages. More than 20 putative outbreak clusters of ovine and caprine brucellosis were identified, several of which persisted over the 8 year survey period despite an aggressive brucellosis eradication campaign. While the outbreaks in Central and Northern Italy were generally associated with introductions of single clones of B. melitensis and their subsequent dissemination within neighbouring territories, we observed weak geographical segregation of genotypes in the southern regions. Biovar determination, recommended in routine analysis of all Brucella strains by the World Organisation for Animal Health (OIE), could not discriminate among the four main global clades. This demonstrates a need for updating the guidelines used for monitoring B. melitensis transmission and spread, both at the national and international level, and to include whole-genome-based typing as the principal method for identification and tracing of brucellosis outbreaks.


Assuntos
Brucella melitensis/genética , Brucelose/epidemiologia , Brucelose/transmissão , Doenças dos Bovinos/epidemiologia , Genoma Bacteriano/genética , Doenças das Cabras/epidemiologia , Animais , Brucella melitensis/classificação , Brucella melitensis/isolamento & purificação , Brucelose/veterinária , Bovinos , Doenças dos Bovinos/microbiologia , Variação Genética , Doenças das Cabras/microbiologia , Cabras , Humanos , Itália/epidemiologia , Repetições Minissatélites/genética , Tipagem de Sequências Multilocus , Filogenia , Ovinos , Sequenciamento Completo do Genoma
20.
Sci Rep ; 10(1): 14914, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913248

RESUMO

Trypanosoma equiperdum is the causative agent of dourine, a parasitic venereal disease of equids. In this work, rabbits were infected with T. equiperdum strain OVI; serological tests (complement fixation test, ELISA and immunoblotting), used for the diagnosis of dourine in horses, were applied to study rabbit humoral immune response and to characterise T. equiperdum antigen pattern recognised by antibodies from infected rabbits. Moreover a protein extract of T. equiperdum strain OVI was produced and tested in skin tests on infected rabbits to detect the cell-mediated response induced by T. equiperdum, in order to evaluate its use in the field diagnosis of dourine. Sera of infected rabbits recognized in immunoblotting Trypanosoma protein bands with molecular weight below 37 kDa, providing a serological response comparable with that already observed in dourine infected horses. Moreover the trypanosome protein extract was capable to produce in vivo delayed-type hypersensitivity (DHT Type IV) in rabbits and proved itself to be non-toxic and non-sensitizing.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Hipersensibilidade Tardia/imunologia , Imunidade Humoral/imunologia , Trypanosoma/imunologia , Tripanossomíase/diagnóstico , Animais , Feminino , Cobaias , Hipersensibilidade Tardia/parasitologia , Masculino , Coelhos , Testes Cutâneos , Tripanossomíase/imunologia , Tripanossomíase/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...