Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 110(7): 075302, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25166379

RESUMO

We theoretically investigate the thermodynamics of an interacting inhomogeneous two-component Fermi gas in an optical lattice. Motivated by a recent experiment by L. Hackermüller et al., Science 327, 1621 (2010), we study the effect of the interplay between thermodynamics and strong correlations on the size of the fermionic cloud. We use dynamical mean-field theory to compute the cloud size, which in the experiment shows an anomalous expansion behavior upon increasing attractive interaction. We confirm this qualitative effect but, assuming adiabaticity, we find quantitative agreement only for weak interactions. For strong interactions we observe significant nonequilibrium effects which we attribute to a dynamical arrest of the particles due to increasing correlations.

2.
Phys Rev Lett ; 106(15): 155301, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21568569

RESUMO

We investigate a Bose-Fermi mixture in a three-dimensional optical lattice, trapped in a harmonic potential. Using generalized dynamical mean-field theory, which treats the Bose-Bose and Bose-Fermi interaction in a fully nonperturbative way, we show that for experimentally relevant parameters a peak in the condensate fraction close to the point of vanishing Bose-Fermi interaction is reproduced within a single-band framework. We identify two physical mechanisms contributing to this effect: the spatial redistribution of particles when the interspecies interaction is changed and the reduced phase space for strong interactions, which results in a higher temperature at fixed entropy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...