Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Chemother Pharmacol ; 79(3): 545-558, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28243682

RESUMO

PURPOSE: BI 893923 is a novel IGF1R/INSR inhibitor with promising anti-tumor efficacy. Dose-limiting hyperglycemia has been observed for other IGF1R/INSR inhibitors in clinical trials. To counterbalance anti-tumor efficacy with the risk of hyperglycemia and to determine the therapeutic window, we aimed to develop a translational pharmacokinetic/pharmacodynamics model for BI 893923. This aimed to translate pharmacokinetics and pharmacodynamics from animals to humans by an allometrically scaled semi-mechanistic model. METHODS: Model development was based on a previously published PK/PD model for BI 893923 in mice (Titze et al., Cancer Chemother Pharmacol 77:1303-1314, 13). PK and blood glucose parameters were scaled by allometric principles using body weight as a scaling factor along with an estimation of the parameter exponents. Biomarker and tumor growth parameters were extrapolated from mouse to human using the body weight ratio as scaling factor. RESULTS: The allometric PK/PD model successfully described BI 893923 pharmacokinetics and blood glucose across mouse, rat, dog, minipig, and monkey. BI 893923 human exposure as well as blood glucose and tumor growth were predicted and compared for different dosing scenarios. A comprehensive risk-benefit analysis was conducted by determining the net clinical benefit for each schedule. An oral dose of 2750 mg BI 893923 divided in three evenly distributed doses was identified as the optimal human dosing regimen, predicting a tumor growth inhibition of 90.4% without associated hyperglycemia. CONCLUSION: Our model supported human therapeutic dose estimation by rationalizing the optimal efficacious dosing regimen with minimal undesired effects. This modeling approach may be useful for PK/PD scaling of other IGF1R/INSR inhibitors.


Assuntos
Hiperglicemia/induzido quimicamente , Pirimidinas/efeitos adversos , Pirimidinas/farmacocinética , Receptor de Insulina/antagonistas & inibidores , Receptores de Somatomedina/antagonistas & inibidores , Algoritmos , Animais , Antígenos CD , Biomarcadores Tumorais/sangue , Glicemia , Peso Corporal , Simulação por Computador , Cães , Humanos , Hiperglicemia/sangue , Macaca fascicularis , Camundongos , Modelos Estatísticos , Dinâmica não Linear , Pirimidinas/farmacologia , Ratos Wistar , Receptor IGF Tipo 1 , Medição de Risco , Suínos , Porco Miniatura , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Eur J Pharm Sci ; 97: 38-46, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27825920

RESUMO

Oncolytic viruses (OV) represent an encouraging new therapeutic concept for treatment of human cancers. OVs specifically replicate in tumor cells and initiate cell lysis whilst tumor cells act as endogenous bioreactors for virus amplification. This complex bidirectional interaction between tumor and oncolytic virus hampers the establishment of a straight dose-concentration-effect relation. We aimed to develop a generic mathematical pharmacokinetic/pharmacodynamics (PK/PD) model to characterize the relationship between tumor cell growth and kinetics of different OVs. U87 glioblastoma cell growth and titer of Newcastle disease virus (NDV), reovirus (RV) and parvovirus (PV) were systematically determined in vitro. PK/PD analyses were performed using non-linear mixed effects modeling. A viral dynamic model (VDM) with a common structure for the three different OVs was developed which simultaneously described tumor growth and virus replication. Virus specific parameters enabled a comparison of the kinetics and tumor killing efficacy of each OV. The long-term interactions of tumor cells with NDV and RV were simulated to predict tumor reoccurrence. Various treatment scenarios (single and multiple dosing with same OV, co-infection with different OVs and combination with hypothetical cytotoxic compounds) were simulated and ranked for efficacy using a newly developed treatment rating score. The developed VDM serves as flexible tool for the systematic cross-characterization of tumor-virus relationships and supports preselection of the most promising treatment regimens for follow-up in vivo analyses.


Assuntos
Proliferação de Células/fisiologia , Modelos Teóricos , Vírus Oncolíticos/metabolismo , Carga Tumoral/fisiologia , Replicação Viral/fisiologia , Animais , Crescimento Celular , Linhagem Celular Tumoral , Humanos , Cinética
3.
Cancer Chemother Pharmacol ; 77(6): 1303-14, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27160688

RESUMO

PURPOSE: BI 893923 is a novel IGF1R/INSR tyrosine kinase inhibitor demonstrating anti-tumor efficacy and good tolerability. We aimed to characterize the relationship between BI 893923 plasma concentration, tumor biomarker modulation, tumor growth and hyperglycemia in mice using in silico modeling analyses. METHODS: In vitro molecular and cellular assays were used to demonstrate the potency and selectivity of BI 893923. Diverse in vitro DMPK assays were used to characterize the compound's drug-like properties. Mice xenografted with human GEO tumors were treated with different doses of BI 893923 to demonstrate the compound's efficacy, biomarker modulation and tolerability. PK/PD analyses were performed using nonlinear mixed-effects modeling. RESULTS: BI 893923 demonstrated potent and selective molecular inhibition of the IGF1R and INSR and demonstrated attractive drug-like properties (permeability, bioavailability). BI 893923 dose-dependently reduced GEO tumor growth and demonstrated good tolerability, characterized by transient hyperglycemia and normal body weight gain. A population PK/PD model was developed, which established relationships between BI 893923 pharmacokinetics, hyperglycemia, pIGF1R reduction and tumor growth. CONCLUSION: BI 893923 demonstrates molecular properties consistent with a highly attractive inhibitor of the IGF1R/INSR. A generic PK/PD model was developed to support preclinical drug development and dose finding in mice.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Neoplasias do Colo/tratamento farmacológico , Modelos Biológicos , Pirimidinas/farmacologia , Pirimidinas/farmacocinética , Receptor de Insulina/antagonistas & inibidores , Receptores de Somatomedina/antagonistas & inibidores , Animais , Antígenos CD , Antineoplásicos/sangue , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Cães , Glucose/metabolismo , Humanos , Camundongos , Pirimidinas/sangue , Pirimidinas/uso terapêutico , Ratos , Receptor IGF Tipo 1 , Suínos , Porco Miniatura , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...