Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(3): 2105-2116, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38198599

RESUMO

Solid-state devices made from correlated oxides, such as perovskite nickelates, are promising for neuromorphic computing by mimicking biological synaptic function. However, comprehending dopant action at the nanoscale poses a formidable challenge to understanding the elementary mechanisms involved. Here, we perform operando infrared nanoimaging of hydrogen-doped correlated perovskite, neodymium nickel oxide (H-NdNiO3, H-NNO), devices and reveal how an applied field perturbs dopant distribution at the nanoscale. This perturbation leads to stripe phases of varying conductivity perpendicular to the applied field, which define the macroscale electrical characteristics of the devices. Hyperspectral nano-FTIR imaging in conjunction with density functional theory calculations unveils a real-space map of multiple vibrational states of H-NNO associated with OH stretching modes and their dependence on the dopant concentration. Moreover, the localization of excess charges induces an out-of-plane lattice expansion in NNO which was confirmed by in situ X-ray diffraction and creates a strain that acts as a barrier against further diffusion. Our results and the techniques presented here hold great potential for the rapidly growing field of memristors and neuromorphic devices wherein nanoscale ion motion is fundamentally responsible for function.

2.
Sci Rep ; 9(1): 4153, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858396

RESUMO

Chip-scale chemical detections were demonstrated by mid-Infrared (mid-IR) integrated optics made by aluminum nitride (AlN) waveguides on flexible borosilicate templates. The AlN film was deposited using sputtering at room temperature, and it exhibited a broad infrared transmittance up to λ = 9 µm. The AlN waveguide profile was created by microelectronic fabrication processes. The sensor is bendable because it has a thickness less than 30 µm that significantly decreases the strain. A bright fundamental mode was obtained at λ = 2.50-2.65 µm without mode distortion or scattering observed. By spectrum scanning at the -OH absorption band, the waveguide sensor was able to identify different hydroxyl compounds, such as water, methanol, and ethanol, and the concentrations of their mixtures. Real-time methanol monitoring was achieved by reading the intensity change of the waveguide mode at λ = 2.65 µm, which overlap with the stretch absorption of the hydroxyl bond. Due to the advantages of mechanical flexibility and broad mid-IR transparency, the AlN chemical sensor will enable microphotonic devices for wearables and remote biomedical and environmental detection.

3.
Opt Express ; 26(14): 18545-18562, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114033

RESUMO

We report the design, fabrication, and characterization of ultralight highly emissive structures with a record-low mass per area that emit thermal radiation efficiently over a broad spectral (2 to 30 microns) and angular (0-60°) range. The structures comprise one to three pairs of alternating metallic and dielectric thin films and have measured effective 300 K hemispherical emissivity of 0.7 to 0.9 (inferred from angular measurements which cover a bandwidth corresponding to 88% of 300K blackbody power). To our knowledge, these micron-scale-thickness structures, are the lightest reported optical coatings with comparable infrared emissivity. The superior optical properties, together with their mechanical flexibility, low outgassing, and low areal mass, suggest that these coatings are candidates for thermal management in applications demanding of ultralight flexible structures, including aerospace applications, ultralight photovoltaics, lightweight flexible electronics, and textiles for thermal insulation.

4.
Artigo em Inglês | MEDLINE | ID: mdl-30997368

RESUMO

Hyperbolic metamaterials are optical materials characterized by highly anisotropic effective permittivity tensor components having opposite signs along orthogonal directions. The techniques currently employed for characterizing the optical properties of hyperbolic metamaterials are limited in their capability for robust extraction of the complex permittivity tensor. Here we demonstrate how an ellipsometry technique based on total internal reflection can be leveraged to extract the permittivity of hyperbolic metamaterials with improved robustness and accuracy. By enhancing the interaction of light with the metamaterial stacks, improved ellipsometric sensitivity for subsequent permittivity extraction is obtained. The technique does not require any modification of the hyperbolic metamaterial sample or sophisticated ellipsometry set-up, and could therefore serve as a reliable and easy-to-adopt technique for characterization of a broad class of anisotropic metamaterials.

5.
Appl Opt ; 50(9): C396-402, 2011 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-21460971

RESUMO

Our first attempts at the fabrication of long-wavelength infrared cut-off filters with extended transmission and rejection regions that are based on the use of the critical angle, the dispersion of refractive indices, and on thin-film interference were not very successful. The design of the filter consisted of layers placed at the interface between two high-index prisms. Using the available deposition equipment, the layers produced were porous and very rough. The pores adsorbed water vapor, which resulted in absorption. The roughness made the process of optical contacting very difficult. In this paper we describe the adjustments in the design and deposition processes that allowed us to obtain filters with a better and more stable performance.

6.
Appl Opt ; 45(7): 1555-62, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16539263

RESUMO

The equipment and methods used to produce wide-angle antireflection coatings based on Reststrahlen materials are described. The optical constants of the coating materials used in the construction of the multilayers were determined by spectrophotometric ellipsometry and are compared with the literature values. The measured performance of an experimentally produced antireflection coating is compared with the expected calculated performance. The reflectance is low over a wide range of angles, but only in the narrow-wavelength region at which the refractive index of the Reststrahlen material is close to unity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...