Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(35): 19940-19947, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32856626

RESUMO

We investigate the orientational dynamics of water molecules solvating phenolate ions using ultrafast vibrational spectroscopy and density functional theory-based molecular dynamics simulations. To assess the roles of the hydrophobic and hydrophilic parts of the anion, we also perform experiments and simulations on solutions of phenol. The experiments show that phenolate immobilizes (τor > 10 ps) 6.2 ± 0.5 water molecules beyond the first solvation shell of its oxygen atom, whereas phenol immobilizes only ∼2 water molecules, including the water molecules in its first solvation shell. The simulations reproduce the experiments very well, and show that phenolate causes a local ordering of the hydrogen-bond structure that extends beyond the first solvation shell, thus explaining the experimental observations. The comparison with phenol solution shows that the solvation interaction of phenolate beyond its first solvation shell is due to the high charge density of its negatively charged oxygen atom.

2.
Nat Commun ; 10(1): 2893, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253797

RESUMO

The solubilities of polyethers are surprisingly counter-intuitive. The best-known example is the difference between polyethylene glycol ([-CH2-CH2-O-]n) which is infinitely soluble, and polyoxymethylene ([-CH2-O-]n) which is completely insoluble in water, exactly the opposite of what one expects from the C/O ratios of these molecules. Similar anomalies exist for oligomeric and cyclic polyethers. To solve this apparent mystery, we use femtosecond vibrational and GHz dielectric spectroscopy with complementary ab initio calculations and molecular dynamics simulations. We find that the dynamics of water molecules solvating polyethers is fundamentally different depending on their C/O composition. The ab initio calculations and simulations show that this is not because of steric effects (as is commonly believed), but because the partial charge on the O atoms depends on the number of C atoms by which they are separated. Our results thus show that inductive effects can have a major impact on aqueous solubilities.

3.
Inorg Chem ; 57(21): 13063-13066, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-29732882

RESUMO

By advanced molecular dynamics simulations, we show that for a highly active ruthenium-based water oxidation catalyst the dangling carboxylate group of the catalyst plays an important role in the crucial O-O bond formation step. The interplay of the flexible group and solvent molecules facilitates two possible pathways: a direct pathway with a single solvent water molecule or a mediated pathway involving two solvent water molecules, which have similar activation barriers. Our results provide an example for which a realistic molecular dynamics approach, incorporating an explicit description of the solvent, is required to reveal the full complexity of an important catalytic reaction in aqueous solvent.

5.
Faraday Discuss ; 195: 291-310, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-27711857

RESUMO

Outer sphere electron transfer between two ions in aqueous solution is a rare event on the time scale of first principles molecular dynamics simulations. We have used transition path sampling to generate an ensemble of reactive trajectories of the self-exchange reaction between a pair of Ru2+ and Ru3+ ions in water. To distinguish between the reactant and product states, we use as an order parameter the position of the maximally localised Wannier center associated with the transferring electron. This allows us to align the trajectories with respect to the moment of barrier crossing and compute statistical averages over the path ensemble. We compare our order parameter with two typical reaction coordinates used in applications of Marcus theory of electron transfer: the vertical gap energy and the solvent electrostatic potential at the ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...