Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACG Case Rep J ; 11(5): e01351, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38764552

RESUMO

Randomized controlled trials demonstrate a significant decline in hospital admissions and length of stay following the initiation of clozapine in individuals with bipolar disorder and schizophrenia, along with an increase in quality-adjusted life years. The morbidity and mortality associated with clozapine-induced gastrointestinal hypomotility (CIGH) is greater than agranulocytosis. Despite this, we only have clozapine risk evaluation and mitigation strategies by the US Food and Drug Administration for white cell count monitoring, but none exists for CIGH. Our case highlights CIGH due to multiple factors and recommendations to prevent it and enhance clozapine compliance by conducting a thorough literature review.

2.
Food Chem Toxicol ; 187: 114595, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554841

RESUMO

This study employed a comprehensive approach to validate the hepatoprotective potential of phytoconstituents from Cichorium intybus leaves. In vitro, in vivo and in silico techniques were used to confirm the protective effects on liver enzymes. In vitro antioxidant assessment revealed the highest potential in the hydroethanolic leaf extract compared to aqueous and methanolic extracts. The study further investigated the ameliorative efficacy of the hydro-ethanolic extract (HECL) in male Wistar rats exposed to lead (50 mg/kg b wt.) and nickel (4.0 mg/kg b wt.) individually and in combination for 90 days. HECL at 250 mg/kg b wt. mitigated hepatic injury, oxidative stress, DNA fragmentation, ultrastructural and histopathological alterations induced by lead and nickel. Molecular docking explored the interaction of 28 phytoconstituents from C. intybus with hepatoprotective protein targets. Cyanidin and rutin exhibited the highest affinity for liver corrective enzymes among the screened phytoconstituents. These findings underscore the liver corrective potential of C. intybus leaf phytoconstituents, shedding light on their molecular interactions with hepatoprotective targets. This research contributes valuable insights into the therapeutic applications of C. intybus in liver protection.


Assuntos
Cichorium intybus , Masculino , Ratos , Animais , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Níquel , Ratos Wistar , Antioxidantes/química , Fígado
3.
3 Biotech ; 14(2): 47, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38268987

RESUMO

Finger millet, being rich source of essential minerals like iron and zinc, is an ideal model to identify candidate genes contributing to high grain iron content (GIC) and zinc content (GZC) in plants. Hence, finger millet diversity panel comprised of 202 genotypes was evaluated in two geographical locations and found to have a wide variation for GIC and GZC. A genome-wide association study using 2977 single nucleotide polymorphism (SNP) markers identified reliable marker-trait associations (MTAs). The use of general linear model (GLM) and mixed linear model (MLM) approaches revealed 5 and 8 common MTAs linked to GIC and GZC, respectively, for both Almora and Pantnagar locations, with a high level of significance (P < 0.01). However, 12 significant MTAs were found to be linked with GIC for Pantnagar location alone. The MTAs were associated with specific genes that produce ferritin (Fer1), iron-regulated transporter-like protein (IRT2), and yellow stripe-like 2 proteins (YSL2). These genes are likely linked to GIC variation in finger millet. Additionally, the variation in GZC in finger millet was connected to genes that encode zinc transporters, namely ZIP1 protein (ZIP1) and ZTP29-like protein (ZTP29). Compared to low GIC and GZC genotypes, high GIC and GZC genotypes exhibited greater relative expression of these genes. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03889-1.

4.
Biopharm Drug Dispos ; 45(1): 15-29, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38243990

RESUMO

Drug metabolism plays a crucial role in drug fate, including therapeutic inactivation or activation, as well as the formation of toxic compounds. This underscores the importance of understanding drug metabolism in drug discovery and development. Considering the substantial costs associated with traditional drug development methods, computational approaches have emerged as valuable tools for predicting the metabolic fate of drug candidates. With this in mind, the present study aimed to investigate the potential mechanisms underlying the modulation of microsomal cytochrome P450 3A1 (CYP3A1) enzyme activity by various phytochemicals found in Cichorium intybus L., commonly known as chicory. To achieve this goal, several in silico methods, including molecular docking and molecular dynamics (MD) simulation, were employed to explore computationally the microsomal CYP3A1 enzyme. Schrodinger software was utilized for the molecular docking study, which involved the interaction analysis between CYP3A1 and 28 phytoconstituents of Cichorium intybus. Virtual screening of 28 compounds from chicory led to the identification of the top five ranked compounds. These compounds were evaluated for drug-likeness properties, pharmacokinetic profiles, and predicted binding affinities to CYP3A1. Caffeoylshikimic acid and cichoric acid emerged as promising candidates due to their favorable characteristics, including good oral bioavailability and high binding affinities to CYP3A1. Molecular dynamics simulations were conducted to assess the stability of caffeoylshikimic acid within the CYP3A1 binding pocket. The results demonstrated that caffeoylshikimic acid maintained stable interactions with the enzyme throughout the simulation, suggesting its potential as an effective modulator of CYP3A1 activity. The findings of this study have the potential to provide valuable insights into the complex molecular mechanisms by which Cichorium intybus L. acts on hepatocytes and modulates CYP3A1 enzyme expression or activity. By elucidating the impact of these phytochemicals on drug metabolism, this research contributes to our understanding of how chicory may interact with drugs and influence their efficacy and safety profiles.


Assuntos
Cichorium intybus , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos/metabolismo , Compostos Fitoquímicos
5.
Genes (Basel) ; 14(4)2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37107567

RESUMO

Colored wheat has gained enormous attention from the scientific community, but the information available on the anthocyanin biosynthetic genes is very minimal. The study involved their genome-wide identification, in silico characterization and differential expression analysis among purple, blue, black and white wheat lines. The recently released wheat genome mining putatively identified eight structural genes in the anthocyanin biosynthesis pathway with a total of 1194 isoforms. Genes showed distinct exon architecture, domain profile, regulatory elements, chromosome emplacement, tissue localization, phylogeny and synteny, indicative of their unique function. RNA sequencing of developing seeds from colored (black, blue and purple) and white wheats identified differential expressions in 97 isoforms. The F3H on group two chromosomes and F3'5'H on 1D chromosomes could be significant influencers in purple and blue color development, respectively. Apart from a role in anthocyanin biosynthesis, these putative structural genes also played an important role in light, drought, low temperature and other defense responses. The information can assist in targeted anthocyanin production in the wheat seed endosperm.


Assuntos
Antocianinas , Transcriptoma , Triticum/genética , Triticum/metabolismo , Endosperma/metabolismo , Sementes/metabolismo
6.
Crit Rev Food Sci Nutr ; : 1-18, 2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36908207

RESUMO

Anthocyanins have been reported for the protective effects against type 2 diabetes and related obesity. This meta-analysis examined the benefits of anthocyanins on type 2 diabetes and obesity biomarkers in animals and humans. The study included 21 clinical trials and 27 pre-clinical studies. A systematic search was conducted using the following inclusion criteria: in vivo rodent studies; human randomized clinical trials, both aimed at assessing the fasting blood glucose (FBG), HbA1c, total cholesterol, triglycerides, high-density lipoprotein and low-density lipoprotein; and study duration of at least two weeks. Out of the 201 examined publications, 48 were shortlisted after implementation of the selection criteria. Results of clinical trials demonstrated that consumption of anthocyanin-rich food significantly reduced the FBG (p < 0.0001), HbA1c (p = 0.02), TC (p = 0.010), TG (p = 0.003), LDL (p = 0.05) and increases the HDL (p = 0.03) levels. Similarly, pre-clinical studies demonstrated the amelioration of the HbA1c (p = 0.02), FBG, TC, TG, and LDL (p < 0.00001), with non-significant changes in the HDL (p = 0.11). Sub-group analysis indicated dose-dependent effect. This compilation confirms that consuming anthocyanin-rich foods positively correlates with the reduction in the blood glucose and lipid levels in diabetic and obese subjects.

7.
Sci Rep ; 13(1): 1729, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720989

RESUMO

Researchers discovered that diets rich in anthocyanin-rich fruits and vegetables significantly impacted gut flora. To conclude, large-scale randomized controlled clinical trials are challenging to conduct; therefore, merging data from multiple small studies may aid. A systematic review collects and analyses all research on a particular subject and design. This comprehensive review and meta-analysis examined the influence of dietary anthocyanins on Firmicutes/Bacteroide (Fir/Bac) and short-chain fatty acids (SCFAs) content. The current meta-analysis followed the guidelines of PRISMA-the preferred reporting items for systematic reviews and meta-analyses. Diets high in anthocyanins substantially reduced the Fir/Bac ratio in the assessed trials. Among three SCFAs, the highest impact was observed on acetic acid, followed by propionic acid, and then butanoic acid. The meta-analysis results also obtained sufficient heterogeneity, as indicated by I2 values. There is strong evidence that anthocyanin supplementation improves rodent gut health biomarkers (Fir/Bac and SCFAs), reducing obesity-induced gut dysbiosis, as revealed in this systematic review/meta-analysis. Anthocyanin intervention duration and dosage significantly influenced the Fir/Bac ratio and SCFA. Anthocyanin-rich diets were more effective when consumed over an extended period and at a high dosage.


Assuntos
Antocianinas , Ácidos Graxos Voláteis , Ácido Acético , Bacteroidetes/genética , Firmicutes/genética
8.
Gene ; 854: 147115, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36526121

RESUMO

Finger millet (Eleusine coracana L.) is climate resilient minor millet of Asia and Africa with wide adaptation and unparallel nutritional profile. To date, genomic resources available in finger millet are scanty and genetic control of agronomic traits remains elusive. Here, a collection of eco-geographically diverse 186 genotypes was quantified for variation in 13 agronomic traits and reaction to blast to identify marker-trait associations (MTAs) using genotyping-by-sequencing (GBS) and genome-wide association study (GWAS). GBS generated 2977 high quality single nucleotide polymorphism (SNPs) markers and identified three subpopulations with varying admixture levels. General linear and mixed model approaches of GWAS to correct for population structure and genetic relatedness identified 132 common MTAs for agronomic traits across the years. The phenotypic variance explained by the makers varied from 4.8% (TP692389-flag leaf width) to 20% (TP714446-green fodder weight). Of these, 26 MTAs showed homology with candidate genes having role in plant growth, development and photosynthesis in the genomes of foxtail millet, rice, maize, wheat and barley. We also found 4 common MTAs for neck blast resistance, which explained 5.9-15.1% phenotypic variance. Three MTAs for neck blast resistance showed orthologues in related genera having putative functions in pathogen defense in plants. The results of this work lay a foundation for understanding the genetic architecture of agronomic traits and blast resistance in finger millet and provide a framework for genomics assisted breeding.


Assuntos
Eleusine , Estudo de Associação Genômica Ampla , Eleusine/genética , Melhoramento Vegetal , Mapeamento Cromossômico/métodos , Fenótipo , Genótipo , Genômica , Polimorfismo de Nucleotídeo Único
9.
BMC Pharmacol Toxicol ; 22(1): 68, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727985

RESUMO

BACKGROUND: Ovarian cancer is the world's dreaded disease and its prevalence is expanding globally. The study of integrated molecular networks is crucial for the basic mechanism of cancer cells and their progression. During the present investigation, we have examined different flavonoids that target protein kinases B (AKT1) protein which exerts their anticancer efficiency intriguing the role in cross-talk cell signalling, by metabolic processes through in-silico approaches. METHOD: Molecular dynamics simulation (MDS) was performed to analyze and evaluate the stability of the complexes under physiological conditions and the results were congruent with molecular docking. This investigation revealed the effect of a point mutation (W80R), considered based on their frequency of occurrence, with AKT1 protein. RESULTS: The ligand with high docking scores and favourable behaviour on dynamic simulations are proposed as potential W80R inhibitors. A virtual screening analysis was performed with 12,000 flavonoids satisfying Lipinski's rule of five according to which drug-likeness is predicted based on its pharmacological and biological properties to be active and taken orally. The pharmacokinetic ADME (adsorption, digestion, metabolism, and excretion) studies featured drug-likeness. Subsequently, a statistically significant 3D-QSAR model of high correlation coefficient (R2) with 0.822 and cross-validation coefficient (Q2) with 0.6132 at 4 component PLS (partial least square) were used to verify the accuracy of the models. Taxifolin holds good interactions with the binding domain of W80R, highest Glide score of - 9.63 kcal/mol with OH of GLU234 and H bond ASP274 and LEU156 amino acid residues and one pi-cation interaction and one hydrophobic bond with LYS276. CONCLUSION: Natural compounds have always been a richest source of active compounds with a wide variety of structures, therefore, these compounds showed a special inspiration for medical chemists. The present study has aimed molecular docking and molecular dynamics simulation studies on taxifolin targeting W80R mutant protein of protein kinase B/serine- threonine kinase/AKT1 (EC:2.7.11.1) protein of ovarian cancer for designing therapeutic intervention. The expected result supported the molecular cause in a mutant form which resulted in a gain of ovarian cancer. Here we discussed validations computationally and yet experimental evaluation or in vivo studies are endorsed for further study. Several of these compounds should become the next marvels for early detection of ovarian cancer.


Assuntos
Neoplasias Ovarianas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Feminino , Flavonoides/química , Flavonoides/farmacocinética , Flavonoides/farmacologia , Humanos , Simulação de Acoplamento Molecular , Neoplasias Ovarianas/tratamento farmacológico , Mutação Puntual , Proteínas Proto-Oncogênicas c-akt/química , Relação Quantitativa Estrutura-Atividade
11.
OMICS ; 24(12): 688-705, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32758001

RESUMO

The future of food and sustainability of the staple food crops are of utmost importance in the 21st century. Micronutrient deficiency, for example, in iron and zinc, is a common cause of human diseases. Mineral content of the staple food crops has therefore crosscutting importance for food engineering and planetary health. Finger millet, a staple food of agricultural importance worldwide, is rich in iron and zinc, and an ideal model to study the prospects of biofortified foods in times of climate change. We report here a multiomics study of the iron and zinc homeostasis in the finger millet. We identified and characterized 15 candidate genes potentially involved in iron and zinc homeostasis pathways in the finger millet. Structural and functional annotation of the candidate genes revealed a high similarity index with their respective homologs (Oryza sativa, Triticum aestivum, Zea mays, Hordeum vulgare, and Setaria italica). Transcriptome-wide expression analysis showed that genes involved in uptake and translocation of iron and zinc are highly expressed in the GP-1 genotype, while those involved in bioavailability of iron and zinc are expressed more in the GP-45 genotype of the finger millet. In conclusion, finger millet, being a stress-resilient crop, utilizes a combination of strategies in iron and zinc homeostasis pathway, which appear to play an important role in food crop acquisition of iron and zinc, despite environmentally limiting conditions. These data offer molecular insights on iron and zinc accumulation and paves the way for new strategies toward staple food crop with mineral biofortification.


Assuntos
Eleusine/metabolismo , Homeostase , Ferro/metabolismo , Metabolômica , Zinco/metabolismo , Bioengenharia , Biofortificação , Mudança Climática , Produtos Agrícolas , Alimentos , Metabolômica/métodos , Micronutrientes/análise , Micronutrientes/deficiência
12.
3 Biotech ; 10(8): 347, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32728514

RESUMO

Finger millet is a rich source of seed storage proteins (SSPs). Various regulatory genes play an important role to maintain the quality and accumulation of SSPs in crop seeds. In the present study, nine regulatory genes of EAAs metabolic pathway, i.e., aspartate kinase, homoserine dehydrogenase, threonine synthase, threonine dehydratase, dihydrodipicolinate synthase, cystathionine γ synthase, anthranilate synthase, acetolactate synthase and lysine 2-oxoglutarato reductase/saccharopine dehydrogenase (LOR/SD) were identified from the transcriptomic data of developing spikes of two finger millet genotypes, i.e., GP-45 and GP-1. Results of sequence alignment search and motif/domain analysis showed high similarity of nucleotide sequences of identified regulatory genes with their respective homologs in rice. Results of promoter analysis revealed the presence of various cis-regulatory elements, like nitrogen responsive cis-elements (O2-site and GCN4), light responsive cis-elements, and stress responsive cis-elements. The presence of nine regulatory genes identified from the transcriptomic data of GP-45 and GP-1 was further confirmed by real time expression analysis in high and low protein containing genotypes, i.e., GE-3885 and GE-1437. Results of real time expression analysis showed significantly higher expression (p ≤ 0.01) of regulatory genes in GE-3885 rather than GE-1437 under control and treatment condition. Crude protein content of GE-3885 was found to be significantly higher (p ≤ 0.01) in comparison to GE-1437 under control condition, while under treatment condition GE-1437 was found to be more responsive to KNO3 treatment rather than GE-3885.

14.
Phys Rev Lett ; 124(4): 046801, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32058772

RESUMO

We show that the chiral Dirac and Majorana hinge modes in three-dimensional higher-order topological insulators (HOTIs) and superconductors (HOTSCs) can be gapped while preserving the protecting C_{2n}T symmetry upon the introduction of non-Abelian surface topological order. In both cases, the topological order on a single side surface breaks time-reversal symmetry, but appears with its time-reversal conjugate on alternating sides in a C_{2n}T preserving pattern. In the absence of the HOTI/HOTSC bulk, such a pattern necessarily involves gapless chiral modes on hinges between C_{2n}T-conjugate domains. However, using a combination of K-matrix and anyon condensation arguments, we show that on the boundary of a 3D HOTI/HOTSC these topological orders are fully gapped and hence "anomalous." Our results suggest that new patterns of surface and hinge states can be engineered by selectively introducing topological order only on specific surfaces.

15.
Bioinformation ; 14(7): 393-397, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30262977

RESUMO

Finger millet is a calcium-rich cereal crop of the grass family. The transcriptome data for finger millet is available at NCBI. It is of interest to annotate and characterize starch synthase enzyme from finger millet transcriptome data. Starch synthase plays an important role in the elongation of glucan chains during the formation of starch. The starch synthase enzyme is characterized using three domains (Glyco_transf_5, Glycos_transf_1 and Glyco_trans_1_4). Binding sites for GLC (alpha-d-glucose), PLP (Pyridoxal-5'- phosphate), AMP (Adenosine monophosphate) and GOL (Glycerol) are found. The phylogenetic analysis showed that the finger millet starch synthase is similar to the granule-bound starch synthase of Oryza sativa and Concrete amaricanus. We report the sequence (GenBank accession number KY648917) and the structural model of finger millet starch synthase (PMDB ID: PM0081600).

16.
PLoS One ; 13(8): e0199444, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30092057

RESUMO

Finger millet (Eleusine coracana L.) is an important dry-land cereal in Asia and Africa because of its ability to provide assured harvest under extreme dry conditions and excellent nutritional properties. However, the genetic improvement of the crop is lacking in the absence of suitable genomic resources for reliable genotype-phenotype associations. Keeping this in view, a diverse global finger millet germplasm collection of 113 accessions was evaluated for 14 agro-morphological characters in two environments viz. ICAR-Vivekananda Institute of Hill Agriculture, Almora (E1) and Crop Research Centre (CRC), GBPUA&T, Pantnagar (E2), India. Principal component analysis and cluster analysis of phenotypic data separated the Indian and exotic accessions into two separate groups. Previously generated SNPs through genotyping by sequencing (GBS) were used for association mapping to identify reliable marker(s) linked to grain yield and its component traits. The marker trait associations were determined using single locus single trait (SLST), multi-locus mixed model (MLMM) and multi-trait mixed model (MTMM) approaches. SLST led to the identification of 20 marker-trait associations (MTAs) (p value<0.01 and <0.001) for 5 traits. While advanced models, MLMM and MTMM resulted in additional 36 and 53 MTAs, respectively. Nine MTAs were common out of total 109 associations in all the three mapping approaches (SLST, MLMM and MTMM). Among these nine SNPs, five SNP sequences showed homology to candidate genes of Oryza sativa (Rice) and Setaria italica (Foxtail millet), which play an important role in flowering, maturity and grain yield. In addition, 67 and 14 epistatic interactions were identified for 10 and 7 traits at E1 and E2 locations, respectively. Hence, the 109 novel SNPs associated with important agro-morphological traits, reported for the first time in this study could be precisely utilized in finger millet genetic improvement after validation.


Assuntos
Mapeamento Cromossômico , Eleusine/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Simulação por Computador , Eleusine/anatomia & histologia , Meio Ambiente , Estudo de Associação Genômica Ampla , Genótipo , Desequilíbrio de Ligação , Modelos Genéticos , Especificidade da Espécie
17.
Bioinformation ; 14(4): 145-152, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29983484

RESUMO

Phytoalexins are small antimicrobial molecules synthesized and accumulated by plants upon exposure to pathogens. Camalexin is an indole-derived phytoalexin, which is accumulated in plants including Arabidopsis thaliana, and other Brassicaceae, which plays a major role in disease resistance against fungal pathogens. The productivity of Brassica crops is adversely affected by Alternaria blight disease, which is caused by Alternaria brassicae. In Arabidopsis thaliana, MAP kinase signalling cascade is known to be involved in synthesis of camalexin, which contributes to disease resistance against a necrtrophic fungal pathogen, Botrytis cinerea. In the present study, MAPK signalling cascade leading to biosynthesis of camalexin that triggers defense responses in B. rapa upon exposure to the most devastating nectrophic fungus, Alternaria brassicae has been elucidated with the help of previously reported MAPK cascade in Arabidopsis thaliana, Molecular modelling, docking, and protein-protein interaction analysis of MAP kinases retrieved from Brassica rapa genome have been carried out to reveal the above cascade. The tertiary structure prediction of MAPKs obtained through molecular modelling revealed that all the protein models fulfil the criteria of being the stable structures. The molecular docking of predicted models for elucidating potential partners of MAPKs revealed strong interactions between MKK1, MKK4, MKK5, MAPK3 and MAPK6 with MKK9. The MAPK signalling cascade also shows different genes that express and play major role in camalexin biosynthesis in B. rapa during defense response to A. brassicae. The understanding of MAPK defense signaling pathway in B. rapa against devastating fungal pathogen Alternaria brassicae would help in devising strategies to develop disease resistance in Brassica crops.

18.
Gene ; 649: 40-49, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29459009

RESUMO

In the present study, we identified seven major genes of oxalic acid biosynthesis pathway (SGAT, GGAT, ICL, GLO, MHAR, APO and OXO) from developing spike transcriptome of finger millet using rice as a reference. Sequence alignment of identified genes showed high similarity with their respective homolog in rice except for OXO and GLO. Transcript abundance (FPKM) reflects the higher accumulation of identified genes in GP-1 (low calcium genotype) as compared to GP-45 (high calcium genotype) which was further confirmed by qRT-PCR analysis, indicating differential oxalate formation in both genotypes. Determination of oxalic acid and tartaric acid content in developing spikes explain that higher oxalic acid content in GP-1 however, tartaric acid content was more in GP-45. Higher calcium content in GP-45 and lower oxalate accumulation may be due to the diversion of more ascorbic acid into tartaric acid and may correspond to less formation of calcium oxalate. Our results suggest that more than one pathway for oxalic acid biosynthesis might be present in finger millet with probable predominance of ascorbate-tartarate pathway rather than glyoxalate-oxalate conversion. Thus, finger millet can be use as an excellent model system for understanding more specific role of nutrients-antinutrients interactions, as evident from the present study.


Assuntos
Eleusine/genética , Ácido Oxálico/metabolismo , Sequência de Bases , Cálcio/metabolismo , Eleusine/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Genótipo , Redes e Vias Metabólicas/genética , Oxalatos/metabolismo , Filogenia , RNA/metabolismo , Sementes/genética , Alinhamento de Sequência , Análise de Sequência de RNA/métodos , Transcriptoma
19.
Bioinformation ; 13(6): 179-184, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28729759

RESUMO

Starch-branching enzymes (SBEs) are one of the four major enzyme classes involved in starch biosynthesis in plants and play an important role in determining the structure and physical properties of starch granules. Multiple SBEs are involved in starch biosynthesis in plants. Finger millet is calcium rich important serial crop belongs to grass family and the transcriptome data of developing spikes is available on NCBI. In this study it was try to find out the gene sequence of starch branching enzyme and annotate the sequence and submit the sequence for further use. Rice SBE sequence was taken as reference and for characterization of the sequence different in silico tools were used. Four domains were found in the finger millet Starch branching enzyme like alpha amylase catalytic domain from 925 to2172 with E value 0, N-terminal Early set domain from 634 to 915 with E value 1.62 e-42, Alpha amylase, C-terminal all-beta domain from 2224 to 2511 with E value 5.80e-24 and 1,4-alpha-glucan-branching enzyme from 421 to 2517 with E value 0. Major binding interactions with the GLC (alpha-d-glucose), CA (calcium ion), GOL (glycerol), TRS (2-amino-2-hydroxymethylpropane- 1, 3-diol), MG (magnesium ion) and FLC (citrate anion) are fond with different residues. It was found in the phylogenetic study of the finger millet SBE with the 6 species of grass family that two clusters were form A and B. In cluster A, finger millet showed closeness with Oryzasativa and Setariaitalica, Sorghum bicolour and Zea mays while cluster B was formed with Triticumaestivum and Brachypodium distachyon. The nucleotide sequence of Finger millet SBE was submitted to NCBI with the accession no KY648913 and protein structure of SBE of finger millet was also submitted in PMDB with the PMDB id - PM0080938. This research presents a comparative overview of Finger millet SBE and includes their properties, structural and functional characteristics, and recent developments on their post-translational regulation.

20.
Plant Genome ; 9(2)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27898819

RESUMO

Finger millet [ (L.) Gaertn.] is grown mainly by subsistence farmers in arid and semiarid regions of the world. To broaden its genetic base and to boost its production, it is of paramount importance to characterize and genotype the diverse gene pool of this important food and nutritional security crop. However, as a result of nonavailability of the genome sequence of finger millet, the progress could not be made in realizing the molecular basis of unique qualities of the crop. In the present investigation, attempts have been made to characterize the genetically diverse collection of 113 finger millet accessions through whole-genome genotyping-by-sequencing (GBS), which resulted in a genome-wide set of 23,000 single-nucleotide polymorphisms (SNPs) segregating across the entire collection and several thousand SNPs segregating within every accession. A model-based population structure analysis reveals the presence of three subpopulations among the finger millet accessions, which are in parallel with the results of phylogenetic analysis. The observed population structure is consistent with the hypothesis that finger millet was domesticated first in Africa, and from there it was introduced to India some 3000 yr ago. A total of 1128 gene ontology (GO) terms were assigned to SNP-carrying genes for three main categories: biological process, cellular component, and molecular function. Facilitated access to high-throughput genotyping and sequencing technologies are likely to improve the breeding process in developing countries, and as such, this data will be very useful to breeders who are working for the genetic improvement of finger millet.


Assuntos
Eleusine/classificação , Eleusine/genética , Genética Populacional/métodos , África , Variação Genética , Genoma de Planta/genética , Genótipo , Técnicas de Genotipagem , Índia , Modelos Genéticos , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...