Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39031069

RESUMO

High-efficiency Pb-Sn narrow-bandgap perovskite solar cells (PSCs) heavily rely on PEDOT:PSS as the hole-transport layer (HTL) owing to its excellent electrical conductivity, dopant-free nature, and facile solution processability. However, the shallow work function (WF) of PEDOT:PSS consequently results in severe minority carrier recombination at the perovskite/HTL interface. Here, we tackle this issue by an in situ interface engineering strategy using a new molecule called 2-fluoro benzylammonium iodide (FBI) that suppresses nonradiative recombination near the Pb-Sn perovskite (FA0.6MA0.4Pb0.4Sn0.6I3)/HTL bottom interface. The WF of PEDOT:PSS increases by 0.1 eV with FBI modification, resulting in Pb-Sn PSCs with 20.5% efficiency and an impressive VOC of 0.843 V. Finally, we have successfully transferred our in situ buried interface modification strategy to fabricate blade-coated FA0.6MA0.4Pb0.4Sn0.6I3 PSCs with 18.3% efficiency and an exceptionally high VOC of 0.845 V.

2.
Adv Mater ; 36(21): e2311745, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38300183

RESUMO

The primary performance limitation in inverted perovskite-based solar cells is the interface between the fullerene-based electron transport layers and the perovskite. Atomic layer deposited thin aluminum oxide (AlOX) interlayers that reduce nonradiative recombination at the perovskite/C60 interface are developed, resulting in >60 millivolts improvement in open-circuit voltage and 1% absolute improvement in power conversion efficiency. Surface-sensitive characterizations indicate the presence of a thin, conformally deposited AlOx layer, functioning as a passivating contact. These interlayers work universally using different lead-halide-based absorbers with different compositions where the 1.55 electron volts bandgap single junction devices reach >23% power conversion efficiency. A reduction of metallic Pb0 is found and the compact layer prevents in- and egress of volatile species, synergistically improving the stability. AlOX-modified wide-bandgap perovskite absorbers as a top cell in a monolithic perovskite-silicon tandem enable a certified power conversion efficiency of 29.9% and open-circuit voltages above 1.92 volts for 1.17 square centimeters device area.

3.
Nat Energy ; 9(2): 172-183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419691

RESUMO

The stabilization of grain boundaries and surfaces of the perovskite layer is critical to extend the durability of perovskite solar cells. Here we introduced a sulfonium-based molecule, dimethylphenethylsulfonium iodide (DMPESI), for the post-deposition treatment of formamidinium lead iodide perovskite films. The treated films show improved stability upon light soaking and remains in the black α phase after two years ageing under ambient condition without encapsulation. The DMPESI-treated perovskite solar cells show less than 1% performance loss after more than 4,500 h at maximum power point tracking, yielding a theoretical T80 of over nine years under continuous 1-sun illumination. The solar cells also display less than 5% power conversion efficiency drops under various ageing conditions, including 100 thermal cycles between 25 °C and 85 °C and an 1,050-h damp heat test.

4.
ACS Appl Energy Mater ; 6(24): 12515-12525, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38155875

RESUMO

Li-alloying of Cu2ZnSn(S, Se)4 (CZTSSe) absorbers is widely accepted for its beneficial influence on the performance of CZTSSe-based thin film solar cells. Given the degraded morphology characteristic of absorbers synthesized in the presence of excess Li concentrations, it is speculated that Li may be best incorporated into the absorber after synthesis. Here, we report an innovative method to add Li to synthesized CZTSSe by an electrochemical treatment using a liquid electrolyte. Our approach decouples Li addition from absorber synthesis, allowing one to possibly overcome morphology issues associated with high Li concentration. We show that Li is thereby transferred to the absorber and is incorporated into the crystal lattice. The resulting Li concentration in the absorber can be easily controlled by the treatment parameters. Using liquid electrolytes allows a straightforward disassembly of the lithiation setup and hence the fabrication of solar cells after electrochemical treatment. Electrochemically lithiated solar cells reached power conversion efficiencies of up to 9.0%. Further optimization of this innovative method is required to reduce expected interface issues resulting from the electrochemical treatment to demonstrate a gain in the power conversion efficiency of the CZTSSe solar cells. Finally, our results indicate strong lateral Li diffusion, which deserves further investigation. Moreover, the method could be transferred to other material systems, such as Cu(In, Ga)Se2 (CIGS), and adapted to treat layers with other alkali elements such as Na.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36758226

RESUMO

Tin fluoride (SnF2) is an indispensable additive for high-efficiency Pb-Sn perovskite solar cells (PSCs). However, the spatial distribution of SnF2 in the perovskite absorber is seldom investigated while essential for a comprehensive understanding of the exact role of the SnF2 additive. Herein, we revealed the spatial distribution of the SnF2 additive and made structure-optoelectronic properties-flexible photovoltaic performance correlation. We observed the chemical transformation of SnF2 to a fluorinated oxy-phase on the Pb-Sn perovskite film surface due to its rapid oxidation. In addition, at the buried perovskite interface, we detected and visualized the accumulation of F- ions. We found that the photoluminescence quantum yield of Pb-Sn perovskite reached the highest value with 10 mol % SnF2 in the precursor solution. When integrating the optimized absorber in flexible devices, we obtained the flexible Pb-Sn perovskite narrow bandgap (1.24 eV) solar cells with an efficiency of 18.5% and demonstrated 23.1% efficient flexible four-terminal all-perovskite tandem cells.

6.
ACS Appl Mater Interfaces ; 13(16): 19487-19496, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33870689

RESUMO

The rear interface of kesterite absorbers with Mo back contact represents one of the possible sources of nonradiative voltage losses (ΔVoc,nrad) because of the reported decomposition reactions, an uncontrolled growth of MoSe2, or a nonoptimal electrical contact with high recombination. Several intermediate layers (IL), such as MoO3, TiN, and ZnO, have been tested to mitigate these issues, and efficiency improvements have been reported. However, the introduction of IL also triggers other effects such as changes in alkali diffusion, altered morphology, and modifications in the absorber composition, all factors that can also influence ΔVoc,nrad. In this study, the different effects are decoupled by designing a special sample that directly compares four rear structures (SLG, SLG/Mo, SLG/Al2O3, and SLG/Mo/Al2O3) with a Na-doped kesterite absorber optimized for a device efficiency >10%. The IL of choice is Al2O3 because of its reported beneficial effect to reduce the surface recombination velocity at the rear interface of solar cell absorbers. Identical annealing conditions and alkali distribution in the kesterite absorber are preserved, as measured by time-of-flight secondary ion mass spectrometry and energy-dispersive X-ray spectroscopy. The lowest ΔVoc,nrad of 290 mV is measured for kesterite grown on Mo, whereas the kesterite absorber on Al2O3 exhibits higher nonradiative losses up to 350 mV. The anticipated field-effect passivation from Al2O3 at the rear interface could not be observed for the kesterite absorbers prepared by the two-step process, further confirmed by an additional experiment with air annealing. Our results suggest that Mo with an in situ formed MoSe2 remains a suitable back contact for high-efficiency kesterite devices.

7.
Sci Rep ; 11(1): 3536, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574482

RESUMO

The sintering of alumina (Al2O3) traditionally occurs at high temperatures (up to ca. 1700 °C) and in significantly long times (up to several hours), which are required for the consolidation of the material by diffusion processes. Here we investigate the photonic sintering of alumina particles using millisecond flash lamp irradiation with extreme heating rates up to 108 K/min. The limitation of the low visible light absorption of alumina is resolved by adding colored α-Fe2O3 nanoparticles, which initiated the grain growth during sintering. After the millisecond-long light pulses from a xenon flash lamp, a bimodal mixture of α-Al2O3 precursor particles was sintered and iron segregation at the grain boundaries was observed. The proposed photonic sintering approach based on doping with colored centers may be extended to other refractory ceramics with low absorption in the visible light range once appropriate high-absorbing dopants are identified.

8.
J Mater Chem A Mater ; 9(47): 26680-26687, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34976398

RESUMO

The scalability of highly efficient organic-inorganic perovskite solar cells (PSCs) is one of the major challenges of solar module manufacturing. Various scalable methods have been explored to strive for uniform perovskite films of high crystal quality on large-area substrates, but each of these methods has individual limitations on the potential of successful commercialization of perovskite photovoltaics. Here, we report a fully scalable hybrid process, which combines vapor- and solution-based techniques to deposit high quality uniform perovskite films on large-area substrates. This two-step process does not use toxic solvents, and it further allows easy implementation of passivation strategies and additives. We fabricate PSCs based on this process and use blade coating to deposit a SnO2 electron transporting layer and Spiro-OMeTAD hole transporting layer without halogenated solvents in ambient air. The fabricated PSCs have achieved open-circuit voltage up to 1.16 V and power conversion efficiency of 18.7% with good uniformity on 5 cm × 5 cm substrates.

9.
Sci Rep ; 10(1): 16664, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028862

RESUMO

The rapid evolution of the neuromorphic computing stimulates the search for novel brain-inspired electronic devices. Synaptic transistors are three-terminal devices that can mimic the chemical synapses while consuming low power, whereby an insulating dielectric layer physically separates output and input signals from each other. Appropriate choice of the dielectric is crucial in achieving a wide range of operation frequencies in these devices. Here we report synaptic transistors with printed aluminum oxide dielectrics, improving the operation frequency of solution-processed synaptic transistors by almost two orders of magnitude to 50 kHz. Fabricated devices, yielding synaptic response for all audio frequencies (20 Hz to 20 kHz), are employed in an acoustic response system to show the potential for future research in neuro-acoustic signal processing with printed oxide electronics.


Assuntos
Materiais Biomiméticos , Processamento de Sinais Assistido por Computador , Sinapses/fisiologia , Transistores Eletrônicos , Óxido de Alumínio , Biomimética , Eletrônica
10.
ACS Appl Mater Interfaces ; 12(32): 36196-36207, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32672438

RESUMO

Lithium garnet Li7La3Zr2O12 (LLZO) is being investigated as a potential solid electrolyte for next-generation solid-state batteries owing to its high ionic conductivity and electrochemical stability against metallic lithium and high potential cathodes. While the LLZO/Li metal anode interface has been thoroughly investigated to achieve almost negligible interface resistances, the LLZO/cathode interface still suffers from high interfacial resistances mainly due to the high-temperature sintering required for proper ceramic bonding. In this work, the LLZO solid electrolyte/LiCoO2 (LCO) cathode interface is investigated in an all-thin-film model system. This architecture provides an easy access to the interface for in situ and ex situ characterization, allowing one to identify the degradation processes taking place under high-temperature cosintering and to test solutions such as interface modifications. Introducing an in situ-lithiated Nb2O5 diffusion barrier at the interface, we were able to lower the LLZO/LCO charge transfer resistance to about 50 Ω cm2, a 3-fold reduction with respect to previously reported values. The low interfacial resistance combined with the high conductance through the LLZO thin-film electrolyte allows one to investigate the charge transfer at high charge-discharge rates, unlike in bulk systems. At 1C, discharge capacities of about 140 mA h g-1 were measured, and at 10C, 60% of the theoretical capacity was retained with a cycle life over 100 cycles. Besides the role of this architecture in the interface investigation, this work also constitutes a milestone in the development of thin-film solid-state batteries with higher power densities.

11.
ACS Nano ; 14(6): 7502-7512, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32459466

RESUMO

Four-terminal (4-T) tandem solar cells (e.g., perovskite/CuInSe2 (CIS)) rely on three transparent conductive oxide electrodes with high mobility and low free carrier absorption in the near-infrared (NIR) region. In this work, a reproducible In2O3:H (IO:H) film deposition process is developed by independently controlling H2 and O2 gas flows during magnetron sputtering, yielding a high mobility value up to 129 cm2 V-1 s-1 in highly crystallized IO:H films annealed at 230 °C. Optimization of H2 and O2 partial pressures further decreases the crystallization temperature to 130 °C. By using a highly crystallized IO:H film as the front electrode in NIR-transparent perovskite solar cell (PSC), a 17.3% steady-state power conversion efficiency and an 82% average transmittance between 820 and 1300 nm are achieved. In combination with an 18.1% CIS solar cell, a 24.6% perovskite/CIS tandem device in 4-T configuration is demonstrated. Optical analysis suggests that an amorphous IO:H film (without postannealing) and a partially crystallized IO:H film (postannealed at 150 °C), when used as a rear electrode in a NIR-transparent PSC and a front electrode in a CIS solar cell, respectively, can outperform the widely used indium-doped zinc oxide (IZO) electrodes, leading to a 1.38 mA/cm2 short-circuit current (Jsc) gain in the bottom CIS cell of 4-T tandems.

12.
Sci Technol Adv Mater ; 20(1): 786-795, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447957

RESUMO

The possibility to manufacture perovskite solar cells (PSCs) at low temperatures paves the way to flexible and lightweight photovoltaic (PV) devices manufactured via high-throughput roll-to-roll processes. In order to achieve higher power conversion efficiencies, it is necessary to approach the radiative limit via suppression of non-radiative recombination losses. Herein, we performed a systematic voltage loss analysis for a typical low-temperature processed, flexible PSC in n-i-p configuration using vacuum deposited C60 as electron transport layer (ETL) and two-step hybrid vacuum-solution deposition for CH3NH3PbI3 perovskite absorber. We identified the ETL/absorber interface as a bottleneck in relation to non-radiative recombination losses, the quasi-Fermi level splitting (QFLS) decreases from ~1.23 eV for the bare absorber, just ~90 meV below the radiative limit, to ~1.10 eV when C60 is used as ETL. To effectively mitigate these voltage losses, we investigated different interfacial modifications via vacuum deposited interlayers (BCP, B4PyMPM, 3TPYMB, and LiF). An improvement in QFLS of ~30-40 meV is observed after interlayer deposition and confirmed by comparable improvements in the open-circuit voltage after implementation of these interfacial modifications in flexible PSCs. Further investigations on absorber/hole transport layer (HTL) interface point out the detrimental role of dopants in Spiro-OMeTAD film (widely employed HTL in the community) as recombination centers upon oxidation and light exposure.

13.
J Phys Chem Lett ; 10(11): 2829-2835, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31070031

RESUMO

The performance of kesterite (Cu2ZnSn(S,Se)4, CZTSSe) solar cells is hindered by low open circuit voltage ( Voc). The commonly used metric for Voc-deficit, namely, the difference between the absorber band gap and qVoc, is not well-defined for compositionally complex absorbers like kesterite where the bandgap is hard to determine. Here, nonradiative voltage losses are analyzed by measuring the radiative limit of Voc, using external quantum efficiency (EQE) and electroluminescence (EL) spectra, without relying on precise knowledge of the bandgap. The method is applied to a series of Cu2ZnSn(S,Se)4 devices with Sn content variation from 27.6 to 32.9 at. % and a corresponding Voc range from 423 to 465 mV. Surprisingly, the lowest nonradiative loss, and hence the highest external luminescence efficiency (QELED), were obtained for the device with the lowest Voc. The trend is assigned to better interface quality between absorber and CdS buffer layer at lower Sn content.

14.
Sci Technol Adv Mater ; 20(1): 313-323, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31044022

RESUMO

Time-resolved photoluminescence (TRPL) is applied to determine an effective lifetime of minority charge carriers in semiconductors. Such effective lifetimes include recombination channels in the bulk as well as at the surfaces and interfaces of the device. In the case of Cu(In,Ga)Se2 absorbers used for solar cell applications, trapping of minority carriers has also been reported to impact the effective minority carrier lifetime. Trapping can be indicated by an increased temperature dependence of the experimentally determined photoluminescence decay time when compared to the temperature dependence of Shockley-Read-Hall (SRH) recombination alone and can lead to an overestimation of the minority carrier lifetime. Here, it is shown by technology computer-aided design (TCAD) simulations and by experiment that the intentional double-graded bandgap profile of high efficiency Cu(In,Ga)Se2 absorbers causes a temperature dependence of the PL decay time similar to trapping in case of a recombinative front surface. It is demonstrated that a passivated front surface results in a temperature dependence of the decay time that can be explained without minority carrier trapping and thus enables the assessment of the absorber quality by means of the minority carrier lifetime. Comparison with the absolute PL yield and the quasi-Fermi-level splitting (QFLS) corroborate the conclusion that the measured decay time corresponds to the bulk minority carrier lifetime of 250 ns for the double-graded CIGS absorber under investigation.

15.
Sci Rep ; 9(1): 5385, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926885

RESUMO

The knowledge of minority carrier lifetime of a semiconductor is important for the assessment of its quality and design of electronic devices. Time-resolved photoluminescence (TRPL) measurements offer the possibility to extract effective lifetimes in the nanosecond range. However, it is difficult to discriminate between surface and bulk recombination and consequently the bulk properties of the semiconductor cannot be estimated reliably. Here we present an approach to constrain systematically the bulk and surface recombination parameters in semiconducting layers and reduces to finding the roots of a mathematical function. This method disentangles the bulk and surface recombination based on TRPL decay times of samples with different surface preparations. The technique is exemplarily applied to a CuInSe2 and a back-graded Cu(In,Ga)Se2 compound semiconductor, and upper and lower bounds for the recombination parameters and the mobility are obtained. Sets of calculated parameters are extracted and used as input for simulations of photoluminescence transients, yielding a good match to experimental data and validating the effectiveness of the methodology. A script for the simulation of TRPL transients is provided.

16.
Sci Technol Adv Mater ; 20(1): 26-34, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30719183

RESUMO

We explore the feasibility of Ag fiber meshes as electron transport layer for high-efficiency flexible Cu(In,Ga)Se2 (CIGS) solar cells. Woven meshes of Ag fibers after UV illumination and millisecond flash-lamp treatment results in a sheet resistance of 17 Ω/sq and a visible transmittance above 85%. Conductive Ag meshes are integrated into flexible CIGS cells as transparent conductive electrode (TCE) alone or together with layers of Al-doped ZnO (AZO) with various thickness of 0…900 nm. The Ag mesh alone is not able to function as a current collector. If used together with a thin AZO layer (50 nm), the Ag mesh markedly improves the fill factor and cell efficiency, in spite of the adverse mesh shadowing. When Ag mesh is combined with thicker (200 nm or 900 nm) AZO layers, no improvements in photovoltaic parameters are obtained. When comparing a hybrid TCE consisting of 50 nm AZO and Ag fiber mesh with a thick 900 nm reference AZO device, an improved charge carrier collection in the near-infrared range is observed. Regardless of the AZO thickness, the presence of Ag mesh slows down cell degradation upon mechanical tensile stress, which could be interesting for implementation into flexible thin film CIGS modules.

17.
Sci Technol Adv Mater ; 19(1): 871-882, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30479675

RESUMO

Structural defects such as voids and compositional inhomogeneities may affect the performance of Cu(In,Ga)Se2 (CIGS) solar cells. We analyzed the morphology and elemental distributions in co-evaporated CIGS thin films at the different stages of the CIGS growth by energy-dispersive x-ray spectroscopy in a transmission electron microscope. Accumulation of Cu-Se phases was found at crevices and at grain boundaries after the Cu-rich intermediate stage of the CIGS deposition sequence. It was found, that voids are caused by Cu out-diffusion from crevices and GBs during the final deposition stage. The Cu inhomogeneities lead to non-uniform diffusivities of In and Ga, resulting in lateral inhomogeneities of the In and Ga distribution. Two and three-dimensional simulations were used to investigate the impact of the inhomogeneities and voids on the solar cell performance. A significant impact of voids was found, indicating that the unpassivated voids reduce the open-circuit voltage and fill factor due to the introduction of free surfaces with high recombination velocities close to the CIGS/CdS junction. We thus suggest that voids, and possibly inhomogeneities, limit the efficiency of solar cells based on three-stage co-evaporated CIGS thin films. Passivation of the voids' internal surface may reduce their detrimental effects.

18.
ACS Appl Mater Interfaces ; 10(50): 43603-43609, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30462473

RESUMO

We report on the application of Zn xTi yO deposited by atomic layer deposition (ALD) as buffer layer in thin film Cu(In,Ga)Se2 (CIGS) solar cells to improve the photovoltaic device performance. State-of-the-art CIGS devices employ a CdS/ZnO layer stack sandwiched between the absorber layer and the front contact. Replacing the sputter deposited ZnO with ALD-Zn xTi yO allowed a reduction of the CdS layer thickness without adversely affecting open-circuit voltage ( VOC). This leads to an increased photocurrent density with a device efficiency of up to 20.8% by minimizing the parasitic absorption losses commonly observed for CdS. ALD was chosen as method to deposit homogeneous layers of Zn xTi yO with varying Ti content with a [Ti]/([Ti] + [Zn]) atomic fraction up to ∼0.35 at a relatively low temperature of 373 K. The Ti content influenced the absorption behavior of the Zn xTi yO layer by increasing the optical bandgap >3.5 eV in the investigated range. Temperature-dependent current-voltage ( I- V) measurements of solar cells were performed to investigate the photocurrent blocking behavior observed for high Ti content. Possible conduction band discontinuities introduced by Zn xTi yO are discussed based on X-ray photoelectron spectroscopy (XPS) measurements.

19.
Sci Technol Adv Mater ; 19(1): 683-692, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30294395

RESUMO

The performance improvement of conventional CdTe solar cells is mainly limited by doping concentration and minority carrier life time. Alloying CdTe with an isovalent element changes its properties, for example its band gap and behaviour of dopants, which has a significant impact on its performance as a solar cell absorber. In this work, the structural, optical, and electronic properties of CdTe1-xSex films are examined for different Se concentrations. The band gap of this compound changes with composition with a minimum of 1.40 eV for x = 0.3. We show that with increasing x, the lattice constant of CdTe1-xSex decreases, which can influence the solubility of dopants. We find that alloying CdTe with Se changes the effect of Cu doping on the p-type conductivity in CdTe1-xSex, reducing the achievable charge carrier concentration with increasing x. Using a front surface CdTe1-xSex layer, compositional, structural and electronic grading is introduced to solar cells. The efficiency is increased, mostly due to an increase in the short-circuit current density caused by a combination of lower band gap and a better interface between the absorber and window layer, despite a loss in the open-circuit voltage caused by the lower band gap and reduced charge carrier concentration.

20.
Adv Sci (Weinh) ; 5(4): 1700712, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29721419

RESUMO

In the search for low-cost and large-scale stationary storage of electricity, nonaqueous aluminum chloride-graphite batteries (AlCl3-GBs) have received much attention due to the high natural abundances of their primary constituents, facile manufacturing, and high energy densities. Much research has focused on the judicious selection of graphite cathode materials, leading to the most notable recent advances in the performance of AlCl3-GBs. However, the major obstacle to commercializing this technology is the lack of oxidatively stable, inexpensive current collectors that can operate in chloroaluminate ionic liquids and are composed of earth-abundant elements. This study presents the use of titanium nitride (TiN) as a compelling material for this purpose. Flexible current collectors can be fabricated by coating TiN on stainless steel or flexible polyimide substrates by low-cost, rapid, scalable methods such as magnetron sputtering. When these current collectors are used in AlCl3-GB coin or pouch cells, stable cathodic operation is observed at voltages of up to 2.5 V versus Al3+/Al. Furthermore, these batteries have a high coulombic efficiency of 99.5%, power density of 4500 W kg-1, and cyclability of at least 500 cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...