Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Gynecol Obstet ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985207

RESUMO

AIM: To evaluate the association of GDM and pre-eclampsia in women with obstetric cholestasis. MATERIALS AND METHODS: Pregnant women with > 28 weeks gestation attending ANC, OPD and labor room of J.N.M.C.H, AMU, Aligarh UP (India) from 2020 to 2022 were included in the study after taking informed consent and ethical approval from the Institute. Women were divided into 2 groups, i.e. group 1 having 200 women with IHCP and group 2 having 200 healthy pregnant women; both the groups were followed up for the development of GDM and pre-eclampsia. RESULTS: A statistically significant association was observed between IHCP and development of GDM [26.5% and odds ratio (OR) 1.64] and pre-eclampsia (17% and OR: 1.95) (p < 0.05), an also GDM and pre-eclampsia were found to be significantly associated with the severity of cholestasis (p < 0.05). Thus, on calculating OR, we found higher odds of developing GDM and pre-eclampsia in IHCP group with raised serum bile acid levels, maximum at 60 µmol/L level as compared to 10-40 µmol/L (GDM: OR: 8.647 and pre-eclampsia: OR: 6.303). Induction and cesarean rates were significantly higher in IHCP group (p < 0.05). CONCLUSION: Our study concludes significant association of IHCP with GDM and pre-eclampsia as all three shares common pathogenetic pathways and greater risk of development at higher serum bile acid levels.

2.
Am J Physiol Regul Integr Comp Physiol ; 326(6): R528-R551, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497126

RESUMO

In pilot work, we showed that somatic nerve transfers can restore motor function in long-term decentralized dogs. We continue to explore the effectiveness of motor reinnervation in 30 female dogs. After anesthesia, 12 underwent bilateral transection of coccygeal and sacral (S) spinal roots, dorsal roots of lumbar (L)7, and hypogastric nerves. Twelve months postdecentralization, eight underwent transfer of obturator nerve branches to pelvic nerve vesical branches, and sciatic nerve branches to pudendal nerves, followed by 10 mo recovery (ObNT-ScNT Reinn). The remaining four were euthanized 18 mo postdecentralization (Decentralized). Results were compared with 18 Controls. Squat-and-void postures were tracked during awake cystometry. None showed squat-and-void postures during the decentralization phase. Seven of eight ObNT-ScNT Reinn began showing such postures by 6 mo postreinnervation; one showed a return of defecation postures. Retrograde dyes were injected into the bladder and urethra 3 wk before euthanasia, at which point, roots and transferred nerves were electrically stimulated to evaluate motor function. Upon L2-L6 root stimulation, five of eight ObNT-ScNT Reinn showed elevated detrusor pressure and four showed elevated urethral pressure, compared with L7-S3 root stimulation. After stimulation of sciatic-to-pudendal transferred nerves, three of eight ObNT-ScNT Reinn showed elevated urethral pressure; all showed elevated anal sphincter pressure. Retrogradely labeled neurons were observed in L2-L6 ventral horns (in laminae VI, VIII, and IX) of ObNT-ScNT Reinn versus Controls in which labeled neurons were observed in L7-S3 ventral horns (in lamina VII). This data supports the use of nerve transfer techniques for the restoration of bladder function.NEW & NOTEWORTHY This data supports the use of nerve transfer techniques for the restoration of bladder function.


Assuntos
Canal Anal , Neurônios Motores , Transferência de Nervo , Recuperação de Função Fisiológica , Uretra , Bexiga Urinária , Animais , Transferência de Nervo/métodos , Cães , Feminino , Bexiga Urinária/inervação , Uretra/inervação , Canal Anal/inervação , Canal Anal/cirurgia , Neurônios Motores/fisiologia , Regeneração Nervosa/fisiologia , Nervo Pudendo/cirurgia , Nervo Pudendo/fisiopatologia
3.
Am J Physiol Regul Integr Comp Physiol ; 325(4): R344-R358, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458380

RESUMO

Very little is known about the physiological role of nicotinic receptors in canine bladders, although functional nicotinic receptors have been reported in bladders of many species. Utilizing in vitro methods, we evaluated nicotinic receptors mediating bladder function in dogs: control (9 female and 11 male normal controls, 5 sham operated), Decentralized (9 females, decentralized 6-21 mo), and obturator-to-pelvic nerve transfer reinnervated (ObNT-Reinn; 9 females; decentralized 9-13 mo, then reinnervated with 8-12 mo recovery). Muscle strips were collected, mucosa-denuded, and mounted in muscle baths before incubation with neurotransmitter antagonists, and contractions to the nicotinic receptor agonist epibatidine were determined. Strip response to epibatidine, expressed as percent potassium chloride, was similar (∼35% in controls, 30% in Decentralized, and 24% in ObNT-Reinn). Differentially, epibatidine responses in Decentralized and ObNT-Reinn bladder strips were lower than controls after tetrodotoxin (TTX, a sodium channel blocker that inhibits axonal action potentials). Yet, in all groups, epibatidine-induced strip contractions were similarly inhibited by mecamylamine and hexamethonium (ganglionic nicotinic receptor antagonists), SR 16584 (α3ß4 neuronal nicotinic receptor antagonist), atracurium and tubocurarine (neuromuscular nicotinic receptor antagonists), and atropine (muscarinic receptor antagonist), indicating that nicotinic receptors (particularly α3ß4 subtypes), neuromuscular and muscarinic receptors play roles in bladder contractility. In control bladder strips, since tetrodotoxin did not inhibit epibatidine contractions, nicotinic receptors are likely located on nerve terminals. The tetrodotoxin inhibition of epibatidine-induced contractions in Decentralized and ObNT-Reinn suggests a relocation of nicotinic receptors from nerve terminals to more distant axonal sites, perhaps as a compensatory mechanism to recover bladder function.


Assuntos
Transferência de Nervo , Receptores Nicotínicos , Cães , Animais , Feminino , Masculino , Bexiga Urinária , Tetrodotoxina/farmacologia , Canal Anal , Neurônios Motores
4.
Chemosphere ; 308(Pt 1): 136091, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36002060

RESUMO

The release of metal-based nanoparticles (MNPs) and nanoplastic debris (NPDs) has become ubiquitous in the natural ecosystem. Interaction between MNPs and NPDs may alter their fate and transport in the sub-surface environment and have not been addressed so far. Therefore, the present study has explored the role of NPDs on the stability and mobility of extensively used MNPs, i.e., CuO nanoparticles (NPs) under varying soil solutions (SS) chemistry. In the absence of NPDs, a very high aggregation of CuO NPs observed in SS extracted from black, lateritic, and red soils, which can be correlated with ionic strength (IS) and type of ionic species. The sedimentation rate (ksed(1/h)) for CuO NPs was >0.5 h-1 in the case of these SS. Interestingly, the stability and sedimentation behavior of CuO NPs varied significantly in the presence of NPDs. The ksed for CuO NPs decreased to half and found <0.25 h-1 in the presence of NPDs in all SS. C/C0 values in breakthrough curves increased drastically (black < alluvial < laterite < red) in presence of NPDs. Results suggest that the release of NPDs in the terrestrial ecosystem is a potential threat leading to increased mobility of MNPs in the environment.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Cobre , Ecossistema , Microplásticos , Óxidos , Solo , Soluções
5.
PLoS One ; 17(3): e0264382, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35231045

RESUMO

This study aimed to identify potential lateralization of bladder function. Electrical stimulation of spinal roots or the pelvic nerve's anterior vesical branch was performed bilaterally in female dogs. The percent difference between the left and right stimulation-induced increased detrusor pressure was determined. Bladders were considered left or right-sided if differences were greater or less than 25% or 10%. Based on differences of 25%, upon stimulation of spinal roots, bladders were left-sided in 17/44 (38.6%), right-sided in 12/44 (27.2%) and bilateral in 15/44 (34.2%). Using ± 10%, 48% had left side dominance (n = 21/44), 39% had right side dominance (n = 17/44), and 14% were bilateral (n = 6/44). With stimulation of the pelvic nerve's anterior vesical branch in 19 dogs, bladders were left-sided in 8 (42.1%), right-sided in 6 (31.6%) and bilateral in 5 (26.3%) using 25% differences and left side dominance in 8 (43%), right sided in 7 (37%) and bilateral in 4 (21%) using 10% differences. These data suggest lateralization of innervation of the female dog bladder with left- and right-sided lateralization occurring at similar rates. Lateralization often varied at different spinal cord levels within the same animal.


Assuntos
Cães/fisiologia , Raízes Nervosas Espinhais/fisiologia , Nervos Espinhais/fisiologia , Bexiga Urinária/fisiologia , Fenômenos Fisiológicos do Sistema Urinário , Animais , Estimulação Elétrica , Feminino
6.
Front Neural Circuits ; 16: 839521, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310548

RESUMO

Spinal interneurons play a critical role in motor output. A given interneuron may receive convergent input from several different sensory modalities and descending centers and relay this information to just as many targets. Therefore, there is a critical need to quantify populations of spinal interneurons simultaneously. Here, we quantify the functional connectivity of spinal neurons through the concurrent recording of populations of lumbar interneurons and hindlimb motor units in the in vivo cat model during activation of either the ipsilateral sural nerve or contralateral tibial nerve. Two microelectrode arrays were placed into lamina VII, one at L3 and a second at L6/7, while an electrode array was placed on the surface of the exposed muscle. Stimulation of tibial and sural nerves elicited similar changes in the discharge rate of both interneurons and motor units. However, these same neurons showed highly significant differences in prevalence and magnitude of correlated activity underlying these two forms of afferent drive. Activation of the ipsilateral sural nerve resulted in highly correlated activity, particularly at the caudal array. In contrast, the contralateral tibial nerve resulted in less, but more widespread correlated activity at both arrays. These data suggest that the ipsilateral sural nerve has dense projections onto caudal lumbar spinal neurons, while contralateral tibial nerve has a sparse pattern of projections.


Assuntos
Interneurônios , Medula Espinal , Animais , Membro Posterior/fisiologia , Interneurônios/fisiologia , Neurônios Aferentes , Medula Espinal/fisiologia
7.
Environ Res ; 203: 111885, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390712

RESUMO

The extensive application of metal oxide nanoparticles (NPs) in various sectors has raised concern about their subsequent release and potentially harmful impacts on the soil system. The present study has addressed the interaction of CuO NPs with bentonite clay colloids (CC) under varying environmental parameters as a model to represent the soil pore water scenario. Based on CuO - CC interaction in model and natural soil solution extracts (SSE), the role of clay fraction and their stability on CuO retention in various types of soils have been evaluated. Results suggested that increasing ionic strength (IS) in the system caused aggregation of CuO NPs, and in the presence of CC, critical coagulation concentration decreased drastically from 27.8 and 17.3 mM to 10.7 and 0.33 mM for NaCl and CaCl2 respectively, due to heteroaggregation in the system. Interestingly, in the SSE, the dominating role of ionic valency, dissolved organic carbon (DOC), and CC was observed in colloidal stabilization over IS. No significant impact of temperature was observed on the stability of CuO NPs both in model and SSE. Further, stability studies in the SSE were correlated with NPs retention behavior in soils. Observations suggest that retention of CuO NPs in soils is a function of binding of the colloidal fraction to the soil, which in turn depends on the colloidal stability. The highest retention was observed in black and laterite soils, whereas lower binding of clay fraction in red soil caused the least retention. A decrease in Kd values after a certain application concentration provided maximum sustainable application concentration of CuO NPs, which may vary with soil properties. Results suggest that the binding of clay and organic matter with a sandy matrix of soil plays a prime role in deciding the overall fate of CuO NPs in the soils.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Argila , Coloides , Cobre/análise , Matéria Orgânica Dissolvida , Solo
8.
Sci Total Environ ; 818: 151831, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34813809

RESUMO

Despite the massive accumulation of nanoplastics (NPs) in the freshwater system, research so far has highly focused on the marine environment. NPs interaction with mineral surfaces can influence their fate in freshwater, which will further impact their bioavailability and transport to the oceans. Current work focuses on understanding NPs interaction with weathering sequence of minerals in freshwater under varying geochemical conditions. Primary mineral feldspar and weathering originated secondary minerals, i.e., kaolinite and gibbsite, were investigated for interaction with NPs under batch mode under relevant environmental conditions. Minerals-NPs interaction was also investigated in natural water samples. Results showed that the amorphous nature, small particle size, and positive surface charge of gibbsite resulted in multi-fold sorption of NPs (108.1 mg/g) compared to feldspar (7.7 mg/g) and kaolinite (11.9 mg/g). FTIR spectroscopy revealed hydrogen bonding and complexation as major players in gibbsite-NPs interaction suggesting the possibility of their co-precipitation. The continuous adsorption-desorption and limited sorption capacity of feldspar and kaolinite can be attributed to their negative surface charge, larger size, crystalline nature, and physical sorption. Therefore, both minerals may co-transport and enhance the mobility of NPs.


Assuntos
Caulim , Microplásticos , Adsorção , Silicatos de Alumínio , Caulim/química , Minerais/química , Compostos de Potássio
9.
J Hazard Mater ; 417: 126096, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34229390

RESUMO

"Nanoplastics- the emerging contaminants" and "agricultural waste to resource conversion" both are currently at the scientific frontiers and require solutions. This study aims to utilize sugarcane bagasse-derived biochar for the removal of nanoplastics (NPs) from aqueous environment. Three types of biochar were synthesized at three different pyrolysis temperatures, i.e. 350, 550, and 750 â„ƒ and evaluated for their potential in removing NPs. Effect of various environmental parameters, i.e., competing ions, pH, humic acid and complex aqueous matrices on NPs sorption was also studied. Results showed that attributing to decreased carbonyl functional groups, increased surface area and pore abundance, biochar prepared at 750 â„ƒ showed drastically higher NPs removal (>99%), while BC-550 and BC-350 showed comparatively lower NPs sorption (<39% and <24%, respectively). Further sorption studies confirmed instantaneous NPs removal with equilibrium attainment within 5 min of interaction and efficient NPs sorption capacity, i.e. 44.9 mg/g for biochar prepared at 750 â„ƒ. Non-linear-kinetic modeling suggested pseudo 1st order removal kinetics while isotherm and thermodynamic modeling confirmed- monolayer instantaneous sorption of NPs sorption. Enhanced electrostatic repulsion resulted in decrease in NPs sorption at alkaline conditions, whereas steric hindrance caused limited removal (<25%) at higher humic acid concentrations.

10.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R897-R915, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33759573

RESUMO

We determined the effect of pelvic organ decentralization and reinnervation 1 yr later on urinary bladder histology and function. Nineteen canines underwent decentralization by bilateral transection of all coccygeal and sacral (S) spinal roots, dorsal roots of lumbar (L)7, and hypogastric nerves. After exclusions, eight were reinnervated 12 mo postdecentralization with obturator-to-pelvic and sciatic-to-pudendal nerve transfers, then euthanized 8-12 mo later. Four served as long-term decentralized only animals. Before euthanasia, pelvic or transferred nerves and L1-S3 spinal roots were stimulated and maximum detrusor pressure (MDP) recorded. Bladder specimens were collected for histological and ex vivo smooth muscle contractility studies. Both reinnervated and decentralized animals showed less or denuded urothelium, fewer intramural ganglia, and more inflammation and collagen, than controls, although percent muscle was maintained. In reinnervated animals, pgp9.5+ axon density was higher compared with decentralized animals. Ex vivo smooth muscle contractions in response to KCl correlated positively with submucosal inflammation, detrusor muscle thickness, and pgp9.5+ axon density. In vivo, reinnervated animals showed higher MDP after stimulation of L1-L6 roots compared with their transected L7-S3 roots, and reinnervated and decentralized animals showed lower MDP than controls after stimulation of nerves (due likely to fibrotic nerve encapsulation). MDP correlated negatively with detrusor collagen and inflammation, and positively with pgp9.5+ axon density and intramural ganglia numbers. These results demonstrate that bladder function can be improved by transfer of obturator nerves to pelvic nerves at 1 yr after decentralization, although the fibrosis and inflammation that developed were associated with decreased contractile function.


Assuntos
Músculo Liso/fisiopatologia , Transferência de Nervo , Traumatismos da Medula Espinal/fisiopatologia , Nervos Espinhais/fisiopatologia , Bexiga Urinária/inervação , Animais , Cães , Estimulação Elétrica/métodos , Contração Muscular/fisiologia , Regeneração Nervosa/fisiologia , Transferência de Nervo/métodos , Raízes Nervosas Espinhais/fisiopatologia , Bexiga Urinária/fisiopatologia
11.
Am J Physiol Regul Integr Comp Physiol ; 320(6): R885-R896, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33759578

RESUMO

This study determined the effect of pelvic organ decentralization and reinnervation 1 yr later on the contribution of muscarinic and purinergic receptors to ex vivo, nerve-evoked, bladder smooth muscle contractions. Nineteen canines underwent decentralization by bilateral transection of all coccygeal and sacral (S) spinal roots, dorsal roots of lumbar (L)7, and hypogastric nerves. After exclusions, 8 were reinnervated 12 mo postdecentralization with obturator-to-pelvic and sciatic-to-pudendal nerve transfers then euthanized 8-12 mo later. Four served as long-term decentralized only animals. Controls included six sham-operated and three unoperated animals. Detrusor muscle was assessed for contractile responses to potassium chloride (KCl) and electric field stimulation (EFS) before and after purinergic receptor desensitization with α, ß-methylene adenosine triphosphate (α,ß-mATP), muscarinic receptor antagonism with atropine, or sodium channel blockade with tetrodotoxin. Atropine inhibition of EFS-induced contractions increased in decentralized and reinnervated animals compared with controls. Maximal contractile responses to α,ß-mATP did not differ between groups. In strips from decentralized and reinnervated animals, the contractile response to EFS was enhanced at lower frequencies compared with normal controls. The observation of increased blockade of nerve-evoked contractions by muscarinic antagonist with no change in responsiveness to purinergic agonist suggests either decreased ATP release or increased ecto-ATPase activity in detrusor muscle as a consequence of the long-term decentralization. The reduction in the frequency required to produce maximum contraction following decentralization may be due to enhanced nerve sensitivity to EFS or a change in the effectiveness of the neurotransmission.


Assuntos
Neurônios Motores/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Bexiga Urinária/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Atropina/farmacologia , Estimulação Elétrica/métodos , Antagonistas Muscarínicos/farmacologia , Contração Muscular/fisiologia , Músculo Liso/fisiologia , Transferência de Nervo/métodos , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/inervação
12.
Environ Sci Pollut Res Int ; 28(31): 41760-41771, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33788088

RESUMO

Chromite ore processing residues (COPR) are real environmental threats, leading to CrO42-, i.e., Cr (VI) leaching into groundwater. It is of serious concern as Cr (VI) is proven to be carcinogenic. Here we emphasize the application of novel and eco-friendly chitin functionalized iron-enriched hydroxyapatite nanocomposite (HAP-Fe0-Ct) in the remediation of Cr (VI)-contaminated groundwater samples collected from Khan Chandpur, India, where the level of Cr (VI) is found to be 11.7 mg/L in a complex aqueous matrix having 793 mg/L of total dissolved solids. Chitin functionality in the composite has resulted in positive zeta potential at circum-neutral pH, favoring electrostatic attraction of chromate ions and resulting in its bulk surface transport. The HAP-Fe0-Ct showed faster kinetics of removal with efficiency (qm = 13.9 ± 0.46 mg/g) for Cr (VI). The composite has shown sorption equilibrium and 100% removal of Cr (VI) within 3 h of interaction time in groundwater samples. No Cr (VI) leaching in the acid wash process at pH 3.5 also suggests chromium's strong chemisorption onto nanocomposite. During the interaction in aqueous solutions, the reduced iron (Fe0) on the nanocomposite becomes oxidized, suggesting the probable simultaneous reduction of Cr (VI) and its co-precipitation. Continuous column extraction of chromate ions was also efficient in both spiked solutions (39.7 ± 0.04 mg/g) and COPR contaminated water (13.2 ± 0.09 mg/g). Reusability up to three cycles with almost complete Cr (VI) removal may be attributed to surface protonation, new binding sites generation, and electron transfer from Fe0 core through defects. The study concludes that HAP-Fe0-Ct could be utilized for continuous Cr (VI) removal from COPR contaminated complex groundwater matrices.


Assuntos
Água Subterrânea , Nanocompostos , Poluentes Químicos da Água , Quitina , Cromatos , Cromo/análise , Durapatita , Íons , Ferro , Poluentes Químicos da Água/análise
13.
Mar Pollut Bull ; 163: 111960, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33453512

RESUMO

Although India is one of the major plastic-waste-generating countries, few studies have been conducted on microplastics (MPs) in freshwater systems that are key contributors to oceans. The current study explores MPs in sediments and water that were collected at five major cities across the Ganga River. MPs number and mass density range in sediment were found to be 17 to 36 items/kg dry weight (d.w.) and 10 to 45 mg/kg d.w. of sediments, respectively, while in the water sample, they were 380 to 684 items/1000 m3 and 143 to 340 mg/1000 m3, respectively. Overall, white color and film-shaped MPs were the major contributors in all samples. MPs of 2.5-5 mm size contributed to a greater number and mass as compared to other fractions. Polyethylene was found to be a widely distributed plastic-type reflecting its high usability.


Assuntos
Microplásticos , Poluentes Químicos da Água , Cidades , Monitoramento Ambiental , Água Doce , Sedimentos Geológicos , Índia , Oceanos e Mares , Plásticos , Rios , Água , Poluentes Químicos da Água/análise
14.
Water Res ; 189: 116622, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33227610

RESUMO

The ubiquitous distribution of microplastics (MPs) leads to inevitable interactions with the toxic pollutants present in the environment including metal-oxide nanoparticles. This study investigates the interaction of CeO2 nanoparticles (CeNPs) with MPs generated from a disposable plastic container. Further, rough MPs (R-MPs), generated through mechanical abrasion of MPs with sand, were used to probe the impact of roughness. To understand the sorption kinetics and underlying interaction processes, batch experiments were carried out. The results distinctly indicate that CeNPs sorption occurred on MPs surfaces and was consistent with the pseudo-second order kinetics model. For pristine MPs, the sorption capacity was as high as 12.9 mg/g while for R-MPs kinetic equilibrium was achieved faster and an enhanced sorption capacity (13.4 mg/g) was identified. A rise in sorption with an increase in salinity was noted while pH and humic acid exhibited a negative correlation. The observed interactions were attributed to the aggregation profile and surface charge of CeNPs and MPs. Surprisingly, CeNPs also got loaded onto MPs in non-agitated and undisturbed conditions. The sorption process was influenced by the type of aqueous matrix and the sorption capacity at equilibrium followed the trend: distilled water> synthetic freshwater> river water. FTIR spectra, zeta potential, SEM imaging, and elemental mapping revealed electrostatic interaction as the dominant mechanism. This work contributes towards the knowledge gap on the environmental risk of MPs.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Adsorção , Microplásticos , Óxidos , Plásticos , Poluentes Químicos da Água/análise
15.
J Hazard Mater ; 407: 124382, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33153793

RESUMO

Co-occurrence of nanoplastics (NPs) with metal oxide nanoparticles (nMOx) and polycyclic aromatic hydrocarbons (PAHs) have been widely reported. However, there is a scarcity of information on their interactions and combined toxic effects. In this study, we used two different sized NPs [55 nm (NP1) and 100 nm (NP2)] to understand the effect of nMOx (nCuO and nZnO) and PAHs [chrysene (Chr) and fluoranthene (Flu)] on NPs' stability and toxicity to zebrafish. Results revealed that increasing the concentration of nMOx, zeta-potential increased, and charge reversal was observed in NPs suspension while PAH produced no major changes. Aggregation kinetics performed with nMOx exhibited higher aggregation of NPs in presence of NaCl that alleviated critical coagulation concentration. NP1 stabilized the size of otherwise unstable nMOx suspension in the tap-water for a longer period, whereas, aggregation was observed with NP2. The in vivo comet assay results showed that NP1 was more genotoxic than NP2 owing to their lower size. Interestingly the DNA damage was highest in NPs+nMOx followed by nMOx and NPs. Unlike nMOx, Chr/Flu+NPs showed reduced DNA damage as compared to NPs or PAH alone. Alteration in catalase activity and lipid peroxidation value indicated oxidative stress in all exposure groups.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Hidrocarbonetos Policíclicos Aromáticos , Óxido de Zinco , Animais , Nanopartículas Metálicas/toxicidade , Microplásticos , Nanopartículas/toxicidade , Óxidos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Peixe-Zebra
16.
J Hazard Mater ; 401: 123375, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32659582

RESUMO

For the prevention of freshwater reservoirs from contamination through industrial effluents, eco-friendly adsorbents with minimal aging impact are required. Here, redox-sensitive nanoscale zero-valent iron(nZVI) particles were supported on four different surfaces with varying bentonite(B)/charcoal(C) ratio to mimic layered and porous surfaces. Different dyes, i.e. rhodamine-B(RB) and methylene blue(MB) were reacted with redox-sensitive supported nZVI composites, and degradation mechanisms were delineated using FT-IR spectroscopic analysis of reaction precipitates. A 300-day exposure to open-air was provided to the composites to comparatively evaluate the impact of aging on their reactivity for dyes in wastewater. Results interpret that dyes removal was a combination of different interfacial chemical processes, i.e., reduction or organic degradation probably through Fenton like processes, along with sorption. These mechanisms were found to be surface dependent, i.e., nZVI on charcoal enriched porous surfaces, degrade dyes through organic degradation while on layered clay surfaces, MB gets removed through reduction with limited and slower RB removal. Nanocomposites show a minimal impact of aging with removal capacities >100 mg/g for BC-1/3-nZVI and C-nZVI for MB and 50-75 mg/g for RB with significant removal in wastewater. Overall, the study concludes C-nZVI and novel BC-1/3-nZVI as two efficient dye adsorbents with minimal aging impact.

17.
J Hazard Mater ; 397: 122769, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32422514

RESUMO

Nano-scale plastic debris (NPDs) are emerging as potential contaminants as they can be easily ingested by aquatic organisms and carry many pollutants in the environment. This study is aimed to remove NPDs from aqueous environment for the first time by using eco-friendly adsorption techniques. Initially, the interaction between NPDs and synthesized Zn-Al layered double hydroxide (LDH) was confirmed by pH titration of Zn-Al LDH against NPDs at varying mass ratio (50:1 to 50:7) and FTIR analysis for both before and after 2 h of contact time. Fast removal was observed in deionized water and synthetic freshwater with maximum sorption capacity (Qmax) of 164.49 mg/g,162.62 mg/g, respectively, according to Sips isotherm. Whereas, removal was least in synthetic hard water having a Qmax value of 53 mg/g. For 2 mM concentration of SO42- and PO43-, the adsorption capacity significantly decreased to 2%. The removal efficiency was found 100 % at pH 4, while at pH 9, it reached 37 % due to increased competitive binding and destabilization of LDH under alkaline conditions. The process of sorption was spontaneous in different types of water studied. The study reveals that Zn-Al LDH can be used as potential adsorbent for the removal of NPDs from freshwater systems.

18.
Environ Sci Process Impacts ; 22(1): 84-94, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31848545

RESUMO

In this work, the stability and aggregation behaviour of CeO2 nanoparticles (NPs) was investigated to predict their fate in the agricultural environment. For this, the aggregation kinetics of CeO2 NPs was studied under varying pH, ionic strength (IS), dissolved organic matter (DOM) and carbonate concentrations in the presence of clay. Furthermore, different types of irrigation water have been used to check the fate of CeO2 nanoparticles (NPs) in complex aqueous matrices. The results show that critical coagulation concentration (CCC) values obtained for CeO2 NPs, i.e. 26.5 mM and 7.9 mM for NaCl and CaCl2 respectively, drastically decreased to 16.2 mM and 1.87 mM in the presence of bentonite clay colloids, which may lead to their deposition within the soil matrix. However, the presence of bicarbonate ions (0.1-2 mM) along with DOM (1-20 mg L-1) may result in their stabilization and co-transport of CeO2 NPs with clay in water bodies having low ionic strength. It was also observed that the negative charge of a bentonite clay suspension was completely reversed with an increase in CeO2 concentration by 37.5 times. The critical charge reversal concentration value was 284.4 mg L-1 in Milli-Q water whereas values were observed to be 680 mg L-1 in synthetic-soft water, followed by natural river water (867 mg L-1) and synthetic-hard water (910 mg L-1). The synergistic effect of temperature and ionic strength was observed on the aggregation behaviour of CeO2 NPs in environmental water samples of varying composition.


Assuntos
Irrigação Agrícola , Cério , Nanopartículas , Praguicidas , Argila , Coloides , Nanopartículas/química , Concentração Osmolar , Praguicidas/química , Água
19.
J Neurosci Methods ; 333: 108562, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31862376

RESUMO

BACKGROUND: Peripheral nerve interfacing has many applications ranging from investigation of neural signals to therapeutic intervention for varied diseases. This need has driven technological advancements in the field of electrode arrays and wireless systems for in-vivo electrophysiological experiments. Hence we present our fully implantable, programmable miniaturized wireless stimulation and recording devices. NEW METHOD: The method consists of technological advancements enabling implantable wireless recording up to 128 channels with a sampling rate of 50Khz and stimulation up to ±4 mA from 15 independent channels. The novelty of the technique consists of induction charging cages which enables freely moving small animals to undergo continuous electrophysiological and behavioral studies without any impediments. The biocompatible hermetic packaging technology for implantable capsules ensures stability for long-term chronic studies. RESULTS: Electromyographs wirelessly recorded from leg muscles of a macaque and a rat using implantable technology are presented during different behavioral task studies. The device's simultaneous stimulation and recording capabilities are reported when interfaced with the vagus and pelvic nerves. COMPARISON WITH EXISTING METHOD(S): The wireless interfacing technology has a large number of recording and stimulating channels without compromising on the signal quality due to sampling rates or stimulating current output capabilities. The induction charging technology along with transceiver and software interface allows experiments on multiple animals to be carried out simultaneously. CONCLUSIONS: This customizable technology using wireless power transmission, reduced battery size, and miniaturized electronics has paved way for a robust, fully implantable, hermetic neural interface system enabling the study of bioelectronic medical therapies.


Assuntos
Próteses e Implantes , Tecnologia sem Fio , Animais , Eletrodos , Desenho de Equipamento , Nervos Periféricos , Ratos
20.
J Neurosurg Spine ; 32(2): 258-268, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703192

RESUMO

OBJECTIVE: Previous patient surveys have shown that patients with spinal cord or cauda equina injuries prioritize recovery of bladder function. The authors sought to determine if nerve transfer after long-term decentralization restores bladder and sphincter function in canines. METHODS: Twenty-four female canines were included in this study. Transection of sacral roots and hypogastric nerves (S Dec) was performed in 6 animals, and 7 animals underwent this procedure with additional transection of the L7 dorsal roots (L7d+S Dec). Twelve months later, 3 L7d+S Dec animals underwent obturator-to-pelvic nerve and sciatic-to-pudendal nerve transfers (L7d+S Dec+Reinn). Eleven animals served as controls. Squat-and-void behaviors were tracked before and after decentralization, after reinnervation, and following awake bladder-filling procedures. Bladders were cystoscopically injected with Fluoro-Gold 3 weeks before euthanasia. Immediately before euthanasia, transferred nerves were stimulated to evaluate motor function. Dorsal root ganglia were assessed for retrogradely labeled neurons. RESULTS: Transection of only sacral roots failed to reduce squat-and-void postures; L7 dorsal root transection was necessary for significant reduction. Three L7d+S Dec animals showing loss of squat-and-void postures post-decentralization were chosen for reinnervation and recovered these postures 4-6 months after reinnervation. Each showed obturator nerve stimulation-induced bladder contractions and sciatic nerve stimulation-induced anal sphincter contractions immediately prior to euthanasia. One showed sciatic nerve stimulation-induced external urethral sphincter contractions and voluntarily voided twice following nonanesthetized bladder filling. Reinnervation was confirmed by increased labeled cells in L2 and the L4-6 dorsal root ganglia (source of obturator nerve in canines) of L7d+S Dec+Reinn animals, compared with controls. CONCLUSIONS: New neuronal pathways created by nerve transfer can restore bladder sensation and motor function in lower motor neuron-lesioned canines even 12 months after decentralization.


Assuntos
Transferência de Nervo , Raízes Nervosas Espinhais/lesões , Bexiga Urinária/inervação , Bexiga Urinária/cirurgia , Animais , Cães , Feminino , Regeneração Nervosa/fisiologia , Transferência de Nervo/métodos , Radiculopatia/fisiopatologia , Sacro/fisiopatologia , Traumatismos da Medula Espinal/cirurgia , Uretra/inervação , Uretra/fisiopatologia , Micção/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...