Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Total Environ ; 861: 160722, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36493813

RESUMO

Eutrophicated inland water bodies are noticed to be one of the contributing factors to greenhouse gas (GHGs) emissions. Direct discharge of untreated or partially treated water is a major concern. Microalgae-based technology and management are regarded as one of the potential nature-based approaches to combat eutrophication. In turn, the microalgae facilitate the recovery of GHGs contributing compounds in the form of organic biomass. The recovered algal biomass can be harnessed for the production of biofuels and other bio-products, like biofertilizer, using anaerobic digestion. By virtue, circular bio-economy can be achieved alongside mitigating GHGs emissions. Before implementing, it is vital to thoroughly explore the links between the process and potential alternatives for wastewater treatment, waste valorization, biofuel production, and land usage. Thus, the present review discusses the impact of eutrophication on ecology and environment, current technologies for mitigating eutrophication and GHGs, and energy recovery through the anaerobic digestion of algal biomass. Further, the processes at the intercept of wastewater treatment and biogas production were reviewed to leverage the potential of anaerobic digestion for making a circular bioeconomy framework.


Assuntos
Gases de Efeito Estufa , Microalgas , Purificação da Água , Anaerobiose , Biomassa , Biocombustíveis
2.
Environ Res ; 219: 115020, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36521539

RESUMO

Hydroponic effluent (HE) contains a reasonable amount of residual nutrients. Therefore, HE could be used as a low-cost growth media for microalgae mediated resource recovery and water recycling. However, the presence of root exudates (particularly, benzoic acid) may lead to toxicity in microalgae.In the present study, the allelopathic effects of benzoic acid on microalgal growth was tested. During 96 h batch growth, Chlorella pyrenoidosa showed the highest biomass concentration (0.064-0.037 g.L-1) compared to Chlorella sorokiniana (0.09-0.26 g.L-1) at the tested benzoic acid doses. Moreover, both the species showed growth stimulation and growth inhibition up to certain benzoic acid doses. Hence, both the microalgal species showed allelopathic behaviour at different doses of benzoic acid. Further, the observed half effective concentration (96 h EC50) were 65.10 mg.L-1 and 105.27 mg.L-1, respectively, for Chlorella pyrenoidosa and C. sorokiniana with 95% confidence limits. Further, Haldane's model best fitted with experimental data of both the microalgae (r âˆ¼ 0.99). Overall, the study reveals that the HE with low benzoic acid dose may serve as a suitable growth media for microalgae. However, further in-depth research interventions using real HE are desirable to determine its real-world applicability.


Assuntos
Chlorella , Microalgas , Águas Residuárias , Hidroponia , Água , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...