Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Geriatr ; 24(1): 567, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951755

RESUMO

INTRODUCTION: Anaemia is a disease of public health importance with multi-causal pathways. Previous literature suggests the role of indoor air pollution (IAP) on haemoglobin levels, but this has been studied less due to logistic constraints. A high proportion of the population in developing countries, including India, still depends on unclean fuel, which exacerbates IAP. The objective was to study the association between anaemia and IAP among the older Indian adult population (≥ 45 years) as per gender. METHODS: Our study analysed the nationally representative dataset of the Longitudinal Ageing Study in India (LASI 2017-18, Wave-1). We have documented the association of anaemia (outcome variable) with IAP (explanatory variable). To reduce the confounding effects of demographic and socioeconomic; health related and behavioural covariates; propensity score matching (PSM) was conducted. Nested multilevel regression modelling was conducted. States and union territories were categorised cross tabulated as low, middle and high as per anaemia and IAP exposure. P value < 0.05 was considered statistically significant. SATA version 17 was used for analysis. RESULTS: More than half (52.52%) of the participants were exposed to IAP (male (53.55%) > female (51.63%)). The odds of having anaemia was significantly 1.19 times higher (AOR 1.19 (1.09-1.31)) among participants using unclean/ solid fuel. The adjusted odds were significantly higher among participants exposed to pollution-generating sources (AOR 1.30; 1.18-1.43), and household indoor smoking (AOR 1.17 (1.07-1.29). The odds of having anaemia were significantly higher (AOR 1.26; 1.15-1.38) among participants exposed to IAP, which was higher in males (AOR 1.36; 1.15-1.61) than females (AOR 1.21; 1.08-1.35). Empowered Action Group (EAG) states like Uttar Pradesh, Chhattisgarh, Madhya Pradesh, Bihar had both high anaemia and IAP exposure. CONCLUSION: This study established the positive association of anaemia with indoor air pollution among older Indian adults through a nationally representative large dataset. The association was higher among men. Further research is recommended to understand detailed causation and to establish temporality. It is a high time to implement positive intervention nationally to decrease solid/ unclean fuel usage, vulnerable ventilation, indoor smoking, IAP and health hazards associated with these with more focused actions towards EAG states.


Assuntos
Poluição do Ar em Ambientes Fechados , Anemia , Humanos , Índia/epidemiologia , Masculino , Feminino , Poluição do Ar em Ambientes Fechados/efeitos adversos , Anemia/epidemiologia , Idoso , Pessoa de Meia-Idade , Estudos Transversais , Estudos Longitudinais , Análise Multinível , Idoso de 80 Anos ou mais
2.
Front Microbiol ; 13: 843415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283821

RESUMO

Soil contamination by geogenic contaminants (GCs) represents an imperative environmental problem. Various soil remediation methods have been successfully employed to ameliorate the health risks associated with GCs. Phytoremediation is considered as an eco-friendly and economical approach to revegetate GC-contaminated soils. However, it is a very slow process, as plants take a considerable amount of time to gain biomass. Also, the process is limited only to the depth and surface area of the root. Inoculation of arbuscular mycorrhizal fungi (AMF) with remediating plants has been found to accelerate the phytoremediation process by enhancing plant biomass and their metal accumulation potential while improving the soil physicochemical and biological characteristics. Progress in the field application is hindered by a lack of understanding of complex interactions between host plant and AMF that contribute to metal detoxification/(im)mobilization/accumulation/translocation. Thus, this review is an attempt to reveal the underlying mechanisms of plant-AMF interactions in phytoremediation.

3.
Front Microbiol ; 12: 731723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002995

RESUMO

Soil contamination with heavy metals (HMs) is a serious concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Rapid industrialization and activities such as mining, manufacturing, and construction are generating a huge quantity of toxic waste which causes environmental hazards. There are various traditional physicochemical techniques such as electro-remediation, immobilization, stabilization, and chemical reduction to clean the contaminants from the soil. However, these methods require high energy, trained manpower, and hazardous chemicals make these techniques costly and non-environment friendly. Bioremediation, which includes microorganism-based, plant-based, microorganism-plant associated, and other innovative methods, is employed to restore the contaminated soils. This review covers some new aspects and dimensions of bioremediation of heavy metal-polluted soils. The bioremediation potential of bacteria and fungi individually and in association with plants has been reviewed and critically examined. It is reported that microbes such as Pseudomonas spp., Bacillus spp., and Aspergillus spp., have high metal tolerance, and bioremediation potential up to 98% both individually and when associated with plants such as Trifolium repens, Helianthus annuus, and Vallisneria denseserrulata. The mechanism of microbe's detoxification of metals depends upon various aspects which include the internal structure, cell surface properties of microorganisms, and the surrounding environmental conditions have been covered. Further, factors affecting the bioremediation efficiency and their possible solution, along with challenges and future prospects, are also discussed.

4.
Environ Sci Pollut Res Int ; 25(29): 29505-29510, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30136183

RESUMO

Application of medicinal plant to cure ailments has been practiced by several civilizations. Nowadays, contamination of heavy metals and pesticide residues in medicinal plant is a serious concern, due to toxic effects on human health. The present study was designed with an aim to quantify the heavy metals and pesticide residues in the 20 medicinal herbs, frequently sold in the local market as raw material without any quality assurance. The concentrations of the elements are as follows: copper (2.42-19.14 µgg-1), cadmium (0.01-2.10 µgg-1), chromium (17.63-58.63 µgg-1), iron (7.61-322.6 µgg-1), and lead (13.00-54.47 µgg-1), whereas total metal concentration ranged between 44.73 and 385.15 µgg-1. Among the organic pesticides, HCH (1.63-6.44 µgg-1) and DDT (0.63-7.14 µgg-1) isomers were found to be present in medicinal plant material. Result showed that lead and chromium concentrations in the herbs were above the permissible limits set by WHO. These herbs should be regularly checked for quality assurance before using raw or as a herbal formulation to avoid chronic exposure of metal and pesticides to human being.


Assuntos
Metais Pesados/análise , Resíduos de Praguicidas/análise , Plantas Medicinais/química , DDT/análise , Poluentes Ambientais/análise , Índia
5.
J Environ Biol ; 28(3): 685-90, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18380096

RESUMO

In the present study, impact of tannery and other industrial effluents on the physico-chemical characteristics of loamy drain water and their consequent impact on soil and plants irrigated with effluent have been studied. The study reveals most of the parameter pH, BOD5 and COD at sampling station I was higher than station II. Waste water quality at both Stations I and II exceeded prescribed limits (BIS) for safe disposal of effluents into the surface water Samples of soil and vegetables from the land irrigated with loamy drain water has been collected and analyzed for Cu, Zn, Ni, Cr Pb and Cd. The different metals showed different enrichment factor for loamy drain water irrigated soil and are as follows: Cd 30% (max), Pb 26%, Zn 18%, Cr 5%, Cu 5%, Ni 2% (min). For plant samples collected at polluted sites are Ni 46% spinach (whole plant) (max), Zn 42% spinach (whole plant), Cr 39% spinach (whole plant), Cu 33% spinach (whole plant), Pb 20% potato tuber, Cd 20% potato tuber (min). The levels of Zn 145, Cu 5.25, and Ni 39.25 microg/ g in spinach, Pb 29.25, Cr 38. 25 and Cd 3.2 microg/g in potato tuber grown on polluted soil irrigated with contaminated drain water were found more than the reference value, which may create chronic health hazard problem to human and cattle through food chain in long run. Accumulation of toxic heavy metals may be build up in the agriculturally productive land where it is treated with contaminated effluent enrich with metals in turn bio-concentrated in the edible fodder/plants.


Assuntos
Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Solanum melongena/metabolismo , Solanum tuberosum/metabolismo , Spinacia oleracea/metabolismo , Curtume , Contaminação de Alimentos , Resíduos Industriais , Metais Pesados/análise , Poluentes do Solo/análise , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA