Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Diabetes Rev ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38766831

RESUMO

OBJECTIVES: Diabetes Mellitus (DM) is a global health concern that affects millions of people globally. The present review aims to narrate the clinical guidelines and therapeutic interventions for Type 2 Diabetes Mellitus (T2DM) patients. Furthermore, the present work summarizes the ongoing phase 1/2/3 and clinical trials against T2DM. METHODS: A meticulous and comprehensive literature review was performed using various databases, such as PubMed, MEDLINE, Clinical trials database (https://clinicaltrials.gov/), and Google Scholar, to include various clinical trials and therapeutic interventions against T2DM. RESULTS: Based on our findings, we concluded that most T2DM-associated clinical trials are interventional. Anti-diabetic therapeutics, including insulin, metformin, Dipeptidyl Peptidase-4 (DPP-4) inhibitors, Glucagon-Like Peptide-1 Receptor Agonists (GLP-1RAs), and Sodium- Glucose cotransporter-2 (SGLT-2) inhibitors are frontline therapeutics being clinically investigated. Currently, the therapeutics in phase IV clinical trials are mostly SGLT-2 inhibitors, implicating their critical contribution to the clinical management of T2DM. CONCLUSION: Despite the success of T2DM treatments, a surge in innovative treatment options to reduce diabetic consequences and improve glycemic control is currently ongoing. More emphasis needs to be on exploring novel targeted drug candidates that can offer more sustained glycemic control.

2.
Int Rev Cell Mol Biol ; 385: 41-99, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38663962

RESUMO

Gastrointestinal carcinomas are a group of cancers associated with the digestive system and its accessory organs. The most prevalent cancers related to the gastrointestinal tract are colorectal, gall bladder, gastric, hepatocellular, and esophageal cancers, respectively. Molecular aberrations in different signaling pathways, such as signal transduction systems or developmental pathways are the chief triggering mechanisms in different cancers Though a massive advancement in diagnostic and therapeutic interventions results in improved survival of patients with gastrointestinal cancer; the lower malignancy stages of these carcinomas are comparatively asymptomatic. Various gastrointestinal-related cancers are detected at advanced stages, leading to deplorable prognoses and increased rates of recurrence. Recent molecular studies have elucidated the imperative roles of several signaling pathways, namely Wnt, Hedgehog, and Notch signaling pathways, play in the progression, therapeutic responsiveness, and metastasis of gastrointestinal-related cancers. This book chapter gives an interesting update on recent findings on the involvement of developmental signaling pathways their mechanistic insight in gastrointestinalcancer. Subsequently, evidences supporting the exploration of gastrointestinal cancer related molecular mechanisms have also been discussed for developing novel therapeutic strategies against these debilitating carcinomas.


Assuntos
Progressão da Doença , Neoplasias Gastrointestinais , Animais , Humanos , Carcinogênese/patologia , Carcinogênese/metabolismo , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/metabolismo , Transdução de Sinais
3.
Front Chem ; 12: 1352009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435669

RESUMO

Glioblastoma multiforme (GBM) is regarded as the most aggressive form of brain tumor delineated by high cellular heterogeneity; it is resistant to conventional therapeutic regimens. In this study, the anti-cancer potential of garcinol, a naturally derived benzophenone, was assessed against GBM. During the analysis, we observed a reduction in the viability of rat glioblastoma C6 cells at a concentration of 30 µM of the extract (p < 0.001). Exposure to garcinol also induced nuclear fragmentation and condensation, as evidenced by DAPI-stained photomicrographs of C6 cells. The dissipation of mitochondrial membrane potential in a dose-dependent fashion was linked to the activation of caspases. Furthermore, it was observed that garcinol mediated the inhibition of NF-κB (p < 0.001) and decreased the expression of genes associated with cell survival (Bcl-XL, Bcl-2, and survivin) and proliferation (cyclin D1). Moreover, garcinol showed interaction with NF-κB through some important amino acid residues, such as Pro275, Trp258, Glu225, and Gly259 during molecular docking analysis. Comparative analysis with positive control (temozolomide) was also performed. We found that garcinol induced apoptotic cell death via inhibiting NF-κB activity in C6 cells, thus implicating it as a plausible therapeutic agent for GBM.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38231063

RESUMO

BACKGROUND: Oxidative stress refers to non-homeostatic elevation within intracellular reactive oxygen species (ROS) levels and is associated with several neuro-related pathological conditions. Diclofenac is a commonly prescribed non-steroidal anti-inflammatory drug (NSAID) for treating aches and pain by reducing inflammation. Diclofenac is also associated with the induction of apoptotic cell death by altering the homeostatic balance within mitochondria. In the present report, the neuroprotective effects of BNC formulation constituted by Bacopa monnieri leaves, Nigella sativa and Curcuma longa rhizome seeds were investigated. METHODS: The synthesized formulation was characterized using FT-IR and LC-MS along with organoleptic evaluation. Thereafter neuroprotective efficacy of BNC formulation was subsequently investigated against Diclofenac-induced oxidative stress in SH-SY5Y cells. The cells were pretreated with synthesized formulation and subsequently evaluated for amelioration in Diclofenac-induced cytotoxicity, and ROS augmentation. The neuroprotective effect of synthesized formulation was further explored by evaluating the changes in nuclear morphology, and apoptosis alleviation with concomitant regulatory effects on caspase-3 and -9 activation. RESULTS: Diclofenac was found to be considerably cytotoxic against human neuroblastoma SHSY5Y cells. Intriguingly, Diclofenac-mediated toxicity was reduced significantly in SH-SY5Y cells pretreated with BNC formulation. Augmented ROS levels within Diclofenac-treated SHSY5Y cells were also reduced in the BNC formulation pretreated SH-SY5Y cells. Furthermore, BNC formulation pretreated SH-SY5Y cells also exhibited reduced dissipation of mitochondrial membrane potential, caspase-3 and -9, along with apoptosis after Diclofenac treatment. CONCLUSION: These findings indicated that, indeed, Diclofenac induces considerable ROSmediated apoptosis in SH-SY5Y cells, which further intriguingly ameliorated Diclofenacmediated cytotoxic effects on SH-SY5Y cells. This manuscript further collected information about available National and International patents published or granted in preparation of and thereof applications against motor and non-motor brain dysfunctions.

5.
Front Pharmacol ; 14: 1194578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915418

RESUMO

In the current study, we report the synthesis of methotrexate-conjugated zinc oxide nanoparticles (MTX-ZnONPs) and their high efficacy against lung cancer cells. Conjugation of MTX with ZnONPs was authenticated by UV-vis spectroscopy, dynamic light scattering (DLS), Fourier-transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). This drug-nanoconjugate also showed high drug-loading efficiency. The therapeutic efficacy of MTX-ZnONPs was further tested in vitro against A549 cells, and the results of MTT and LDH release assays showed that MTX-ZnONPs, in addition to free MTX, were efficient in exerting cytotoxic effect on A549 cells; however, the effectiveness of MTX-ZnONPs was found to be considerably enhanced at very low doses compared to that of free MTX. Moreover, ZnONPs alone significantly inhibited the cell viability of A549 cells at a much higher concentration compared to MTX-ZnONPs and MTX. Furthermore, the cytomorphology of A549 cells was characterized by cellular shrinkage and detachment from the surface in all the treatment groups. Similarly, A549 cells, in all the treatment groups, showed fragmented and condensed nuclei, indicating the initiation of apoptosis. Mitochondrial membrane potential (ψm) in A549 cells showed a gradual loss in all the treatment groups. Results of the qualitative and quantitative analyses depicted increased reactive oxygen species (ROS) levels in A549 cells. The results of the caspase activity assay showed that MTX-ZnONPs andfree MTX caused significant activation of caspase-9, -8, and -3 in A549 cells; however, the effect of MTX-ZnONPs was more profound at very low doses compared to that of free MTX. Thus, our results showed high efficacy of MTX-ZnONPs, suggesting efficient intracellular delivery of the drug by ZnONPs as nanocarriers.

6.
Metabolites ; 13(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37110139

RESUMO

The Wnt signaling pathway is reported to be associated with lung cancer progression, metastasis and drug resistance, and thus it is an important therapeutic target for lung cancer. Plants have been shown as reservoirs of multiple potential anticancer agents. In the present investigation, the ethanolic leaf extract of Artemisia vulgaris (AvL-EtOH) was initially analyzed by means of gas chromatography-mass spectrometry (GC-MS) to identify the important phytochemical constituents. The GC-MS analysis of AvL-EtOH exhibited 48 peaks of various secondary metabolites such as terpenoids, flavonoids, carbohydrates, coumarins, amino acids, steroids, proteins, phytosterols, and diterpenes. It was found that the treatment with increasing doses of AvL-EtOH suppressed the proliferation and migration of lung cancer cells. Furthermore, AvL-EtOH induced prominent nuclear alteration along with a reduction in mitochondrial membrane potential and increased ROS (reactive oxygen species) generation in lung cancer cells. Moreover, AvL-EtOH-treated cells exhibited increased apoptosis, demonstrated by the activation of caspase cascade. AvL-EtOH also induced downregulation of Wnt3 and ß-catenin expression along with cell cycle protein cyclin D1. Thus, the results of our study elucidated the potential of bioactive components of Artemisia vulgaris in the therapeutic management of lung cancer cells.

7.
Chem Biol Drug Des ; 101(4): 962-976, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36651797

RESUMO

The successful chemotherapeutic regime required for the clinical management of different cancers largely depends on the efficient drug delivery within the cancer cells. Exosomes have emerged as an enticing candidate for exploring their role as delivery vehicles. Exosomes are reported to be intrinsically nanosized vesicles competent for efficient delivery across the cellular membrane. In the present study, we assessed the feasibility of an autologous exosome-based drug delivery platform for delivering 5-Fluorouracil (5-FU) against human colon cancer HCT116 cells. Autologous exosomes have shown probable tropism toward the tumor microenvironment, which makes them the most competitive vehicle for drug delivery. It was observed that the autologous exosomes loaded with 5-FU showed an enhanced rate of drug release under acidic conditions. The result of the cell viability assay showed that treatment of 5-FU-loaded exosomes (equivalent to 5 µg 5-FU) resulted in enhanced cytotoxic effect in HCT116 cells as compared to an equivalent amount of free 5-FU (5 µg), which elucidated the efficient delivery of the 5-FU by exosomes inside the cancer cells. Subsequently, 5-FU-loaded exosomes led to increased nuclear condensation and fragmentation along with increased ROS production. In addition, 5-FU-loaded exosomes caused enhanced dissipation of mitochondrial membrane potential and caspase-3 activation, resulting in increased apoptosis induction. Our study also revealed that 5-FU-loaded exosomes upsurged the arrest in the cell cycle at the G0/G1 stage in HCT-116 cells and it was found to be associated with decreased CDK4 and Cyclin D1 expression concomitantly with the upregulation of CDK inhibitor, p21Cip1 expression. Thus, the findings from the present study highlight the advantages of autologous exosomes as a natural drug carrier which could efficiently deliver chemotherapeutic drugs to cancer cells.


Assuntos
Antineoplásicos , Neoplasias do Colo , Exossomos , Humanos , Fluoruracila , Exossomos/metabolismo , Exossomos/patologia , Apoptose , Neoplasias do Colo/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Microambiente Tumoral
8.
Front Pharmacol ; 14: 1325184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38348349

RESUMO

At the molecular level, several developmental signaling pathways, such as Wnt/ß-catenin, have been associated with the initiation and subsequent progression of prostate carcinomas. The present report elucidated the anti-cancerous attributes of an anthraquinone, aloe-emodin (AE), against androgen-independent human prostate cancer DU145 cells. The cytotoxicity profiling of AE showed that it exerted significant cytotoxic effects and increased lactose dehydrogenase levels in DU145 cells (p < 0.01 and p < 0.001). AE also induced considerable reactive oxygen species (ROS)-mediated oxidative stress, which escalated at higher AE concentrations of 20 and 25 µM. AE also efficiently instigated nuclear fragmentation and condensation concomitantly, followed by the activation of caspase-3 and -9 within DU145 cells. AE further reduced the viability of mitochondria with increased cytosolic cytochrome-c levels (p < 0.01 and p < 0.001) in DU145 cells. Importantly, AE exposure was also correlated with reduced Wnt2 and ß-catenin mRNA levels along with their target genes, including cyclin D1 and c-myc. Furthermore, the molecular mechanism of AE was evaluated by performing molecular docking studies with Wnt2 and ß-catenin. Evidently, AE exhibited good binding energy scores toward Wnt2 and ß-catenin comparable with their respective standards, CCT036477 (Wnt2 inhibitor) and FH535 (ß-catenin inhibitor). Thus, it may be considered that AE was competent in exerting anti-growth effects against DU145 androgen-independent prostate cancer cells plausibly by modulating the expression of Wnt/ß-catenin signaling.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36028962

RESUMO

BACKGROUND: Around 1.5 billion people in the world were affected by complex neurological disorders and the figure is increasing alarmingly due to unsatisfactory clinical outcomes. To date, no conventional formulation is able to show a promising effect on the control or prevention of neurodegeneration. However, Nano delivery tools have shown better penetration and profound action on the targeted area of the brain. METHODS: Although existing Nano therapeutic approaches are abundant but would not reach the clinic due to their improper bioavailability, BBB restricts its entry and causes improper biodistribution, so it's a challenge to use certain bioactive as a potential therapy in neurodegenerative disorders. Hybrid nanocarriers are nano-vesicular transported systems, which could be utilized as carriers for the delivery of both hydrophilic and hydrophobic compounds. Available patents on nanodelivery for therapeutic approach will also include in this review. RESULTS: Hybrid Nano delivery system may provide good stability to polar and nonpolar compounds and improve their stability. CONCLUSION: This manuscript updates the available findings on the Nano vesicular system to deliver drugs for neurodegenerative disorders.

10.
Front Pharmacol ; 13: 847534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928278

RESUMO

Adenium obesum commonly known as "desert rose" belongs to the family Apopcynaceae and has previously been reported for its anti-influenza, antimicrobial, and cytotoxic efficacies and well-known for their ethno-medicinal applications. In the present study, ethanolic extracts of A. obesum (AOE) were analyzed by gas chromatography-mass spectrometry (GC-MS) to identify the important phytochemical compounds. The GC-MS analysis of AOE detected the presence of 26 phytochemical compounds. This plant is traditionally used for the treatment of various diseases. In this report, the antioxidant, anti-inflammatory, and anticancer activities of ethanolic leaf extract from A. obesum (AOE) were studied. The antioxidant potential of ethanolic extract of AOE was examined by different antioxidant assays, such as antioxidant capacity by the DPPH, ABTS, superoxide, hydroxyl radical scavenging, and lipid peroxidation inhibition assays. The antioxidant activities of various reaction mixtures of AOE were compared with a reference or standard antioxidant (ascorbic acid). In addition, we also evaluated the anticancer activity of AOE, and it was observed that AOE was found to be cytotoxic against A549 lung cancer cells. It was found that AOE inhibited the viability of A549 lung cancer cells by inducing nuclear condensation and fragmentation. Furthermore, ethanolic AOE demonstrated the anti-inflammatory potential of AOE in murine alveolar macrophages (J774A.1) as an in vitro model system. AOE showed its potential in reducing the levels of inflammatory mediators including the proinflammatory cytokines and TNF-α. The results obtained in the present investigation established the antioxidant, anticancer, and anti-inflammatory potency of AOE, which may account for subsequent studies in the formulation of herbal-based medicine.

11.
J Food Biochem ; 46(10): e14368, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35945689

RESUMO

Liver cancer or hepatocellular carcinoma (HCC) has become a leading cause for cancer burden across the globe, and incidences have tripled since the last two decades. Poor diagnosis of primary liver cancer and limited treatment strategies aggravate the challenges. Researchers globally have shown a steep inclination toward the exploration of plant-based compounds for their nutraceutical and anticancer potential to fit into the role of novel chemotherapeutics. Coleus aromaticus is a well-known culinary herb that earlier has been reported for several medicinal attributes. The current investigation deals with exploring the anticancer potential of ethanolic leaf extract of C. aromaticus (CoL-EtOH) against hepatocellular carcinoma HepG2 cell line. The observations made it evident that CoL-EtOH extract impeded the viability of HepG2 at 400 µg/ml (p < .01). Additionally, the extract also succeeded in escalating ROS production (p < .01) which aided dissipation of mitochondrial membrane potential and disruption of nuclear morphology. CoL-EtOH further activated caspase-8, -9, and -3 which was reaffirmed by increase in apoptosis at 400 µg/ml (p < .01). Moreover, post treatment with CaLEt-OH extract significantly reduced the expression of JAK-1 & STAT-3 genes (p < .01) along with regulated expression of Mcl1, Bcl-2, cyclinD1, p21, and p27 within HepG2 cells. This evidence portrays the promising anticancer potential of CoL-EtOH projecting it as a novel chemotherapeutic agent against HCC. PRACTICAL APPLICATIONS: The herb Coleus aromaticus belonging to Lamiaceae family and Coleus genus is known by various names in different regions of the world and several language-specific vernacular names. The herb has been used in therapeutic and medicinal applications as well as in culinary preparations. Various attributes of the nutritional strength and functional characteristics of the leaves in terms of carotenoids, minerals, phenols, dietary fiber, and antioxidant activity have been reported by several researchers. Carvacrol and thymol are majorly found in the plant, while chlorogenic acid and rosmarinic acid etc. as the phenolic components. The herb has been used in therapeutic and medicinal implications as well as in culinary preparations.


Assuntos
Carcinoma Hepatocelular , Coleus , Neoplasias Hepáticas , Antioxidantes , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Carotenoides , Caspase 8 , Proliferação de Células , Ácido Clorogênico , Fibras na Dieta , Etanol , Células Hep G2 , Humanos , Janus Quinases/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides , Fenóis , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio , Fatores de Transcrição STAT/metabolismo , Timol
12.
Saudi J Biol Sci ; 29(5): 3264-3275, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35844403

RESUMO

Cervical cancer (CCa) is the second most frequent carcinoma in females and human papilloma virus (HPV) oncoproteins are regarded as one of the critical etiological agent. Despite recent advances in screening and management of CCa, still it remains the deadliest carcinoma as advanced and metastatic stages are mostly incurable. This urges for the development of newer therapeutic interventions. The current was aimed to investigate the antiproliferative and apoptotic potential of glycyrrhizin (Gly) against HPV16+ CaSki CCa cells. Our findings substantiated that Gly exerted antiproliferative effects on the CaSki cells by obstructing their proliferation rate. Gly substantially enhanced apoptosis in Caski cells in a dose-dependent manner via augmenting the generation of ROS, DNA fragmentation and disruption of the mitochondrial membrane potential. Gly mediated apoptosis in CaSki cells was found to be due to activation of caspase-8 and capsase-9 along with the modulation of pro-and anti-apoptotic gene expression. Moreover, Gly halts the progression of CaSki cells at G0/G1 phase which was found to be due to reduced expression of cyclin D1 and cyclin-dependent kinase 4 (CDK4) along with the enhanced expression of CDK inhibitor p21Cip1. Further, Gly downregulates the expression of HPV oncoproteins (E6 & E7) along with the inhibition of Notch signaling pathway. Taken together, Gly represents as a potential therapeutic modality for CCa which could rapidly be translated for clinical studies.

13.
Drug Dev Res ; 83(2): 222-224, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-32216115

RESUMO

Recent trends in immunotherapy have shown enthusiasm in exploring Toll-like receptors (TLRs) for designing therapeutical interventions against numerous deadly diseases. TLRs are subfamily of pathogen recognition receptor playing pivotal role in innate immunity. TLR9 is one such critical member belonging to intracellular TLRs which is associated with mounting inflammatory response in response to intruders. Explorative studies have shown CG motifs from the prokaryotic origin as activators of TLR9 culminating in the expression of NFκB. These CG rich short stranded DNA sequences have been further delineated into different classes based on their structural specificities and immunomodulatory properties. Here we discuss the progress of how activation of TLR9 can be utilized with novel parasitic CpG islands to function as potential adjuvants specifically against protozoan parasitic diseases primarily visceral leishmaniasis caused by Leishmania donovani.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Vacinas , Ilhas de CpG , Humanos , Leishmania donovani/genética , Leishmania donovani/metabolismo , Leishmaniose Visceral/prevenção & controle , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
14.
Nutr Cancer ; 74(2): 622-639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33691557

RESUMO

Growing emphasis on exploring the antiproliferative potential of natural compounds has gathered momentum for the formulation of anticancer drugs. In the present study, the anticancer and apoptotic potential of glycyrrhizin (GLY) was studied on HPV- C33A cervical cancer (CCa) cells. Our results indicated that GLY exerted antiproliferative effects in the C33A cells by inducing significant cytotoxicity. Treatment with GLY substantially increases the apoptosis in a dose-dependent manner via disrupting the mitochondrial membrane potential. GLY induced apoptosis in C33A cells via activation of capsase-9 (intrinsic pathway) and caspase-8 (extrinsic pathway) along with the modulation of pro- and antiapoptotic protein expression. Moreover, GLY also exerted cell cycle arrest in C33A cells at G0/G1 phase which was associated with the decreased expression of cyclin D1 and cyclin-dependent kinase 4 (CDK4) along with the increased expression of CDK inhibitor p21Cip1. Furthermore, GLY treated CCa cells exhibited significant downregulation of Notch signaling pathway which may be associated with increased apoptosis as well as cell cycle arrest in C33A CCa cells. Thus, GLY could be an appendage in the prevention and management of CCa.


Assuntos
Neoplasias do Colo do Útero , Apoptose , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação para Baixo , Feminino , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico
15.
Front Chem ; 10: 1064191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712982

RESUMO

Recent times have seen a strong surge in therapeutically targeting the hedgehog (HH)/GLI signaling pathway in cervical cancer. HH signaling pathway is reported to be a crucial modulator of carcinogenesis in cervical cancer and is also associated with recurrence and development of chemoresistance. Moreover, our previous reports have established that carvacrol (CAR) inhibited the proliferation of prostate cancer cells via inhibiting the Notch signaling pathway and thus, it was rational to explore its antiproliferative effects in cervical cancer cell lines. Herein, the present study aimed to investigate the anticancer and apoptotic potential of CAR on C33A cervical cancer cells and further explore the underlying mechanisms. We found that CAR significantly suppressed the growth of C33A cells, induced cell cycle arrest, and enhanced programmed cell death along with augmentation in the level of ROS, dissipated mitochondrial membrane potential, activation of caspase cascade, and eventually inhibited the HH signaling cascade. In addition, CAR treatment increased the expression of pro-apoptotic proteins (Bax, Bad, Fas-L, TRAIL, FADDR, cytochrome c) and concomitantly reduced the expression of anti-apoptotic proteins (Bcl-2 and Bcl-xL) in C33A cells. CAR mediates the activation of caspase-9 and -3 (intrinsic pathway) and caspase-8 (extrinsic pathway) accompanied by the cleavage of PARP in cervical cancer cells. Thus, CAR induced apoptosis by both the intrinsic and extrinsic apoptotic pathways. CAR efficiently inhibited the growth of cervical cancer cells via arresting the cell cycle at G0/G1 phase and modulated the gene expression of related proteins (p21, p27, cyclin D1 and CDK4). Moreover, CAR inhibited the HH/GLI signaling pathway by down regulating the expression of SMO, PTCH and GLI1 proteins in cervical carcinoma cells. With evidence of the above results, our data revealed that CAR treatment suppressed the growth of HPV-C33A cervical cancer cells and further elucidated the mechanistic insights into the functioning of CAR.

16.
Saudi J Biol Sci ; 28(11): 6279-6288, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34764752

RESUMO

Lung carcinoma is the leading cause of cancer-related mortalities worldwide, and present therapeutical interventions are not successful enough to treat this disease in many cases. Recent years have witnessed a surge in exploring natural compounds for their antiproliferative efficacy to expedite the characterization of novel anticancer chemotherapeutics. Swertia chirayita is a valued medicinal herb and possess intrinsic pharmaceutical potential. However, elucidation of its anticancer effects at molecular levels remains unclear and needs to be investigated. We assessed the anticancer and apoptotic efficacy of S. chirayita ethanolic extract (Sw-EtOH) on non-small cell lung cancer (NSCLC) A549 cells during this exploratory study. The results elucidated that S. chirayita extract induced toxic effects within lung cancer cells by ~1 fold during cytotoxicity and LDH release assay at a 400 µg/ml concentration. Sw-EtOH extract elevates the level of ROS, resulting in the disruption of Δψm and release of cytosolic cytochrome c by 3.15 fold. Activation of caspases-3, -8 & -9 also escalated by ~1 fold, which further catalyze the augmentation of PARP cleavage (~3 folds), resulting in a four-fold increase in Sw-EtOH induced apoptosis. The gene expression analysis further demonstrated that Sw-EtOH extracts inhibited JAK1/STAT3 signaling pathway by down-regulating the levels of JAK1 and STAT3 to nearly half a fold. Treatment of Sw-EtOH modulates the expression level of various STAT3 associated proteins, including Bcl-XL, Bcl-2, Mcl-1, Bax, p53, Fas, Fas-L, cyclinD1, c-myc, IL-6, p21 and p27 in NSCLC cells. Thus, our study provided a strong impetus that Sw-EtOH holds the translational potential of being further evaluated as efficient cancer therapeutics and a preventive agent for the management of NSCLC.

17.
Artigo em Inglês | MEDLINE | ID: mdl-34061008

RESUMO

Presently the world is witnessing the most devastating pandemic in the history of mankind caused by Severe Acute Respiratory Syndrome or SARS-CoV-2. This dreaded pandemic is responsible for escalated mortality rates across the globe and this is the worst catastrophe in the history of mankind. Since its outbreak, substantial scientific explorations focusing on the formulation of novel therapeutical and/or adjunct intervention against the disease are continuously in the pipeline. However, till date, no effective therapy has been approved and hence the present alarming situation urges the necessity of exploring novel, safe and efficient interventional strategies. Functionally, terpenoids are a class of secondary plant metabolites having multi facet chemical structures and are categorically documented to be the largest reservoir of bioactive constituents, predominant in nature. Intriguingly, very little is scientifically explored or reviewed in regards to the anti-CoV-2 attributes of terpenoids. The present article thus aims to revisit the antiviral efficacy of terpenoids by reviewing the current scientific literature and thereby provide an opinion on the plausibility of exploring them as potential therapeutical intervention to deal with ongoing CoV-2 pandemic.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Terpenos/uso terapêutico , Animais , Antivirais/efeitos adversos , COVID-19/fisiopatologia , COVID-19/virologia , Interações Hospedeiro-Patógeno , Humanos , SARS-CoV-2/patogenicidade , Terpenos/efeitos adversos
18.
Metab Brain Dis ; 36(5): 829-847, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33704660

RESUMO

Neurodegeneration-associated dementia disorders (NADDs), namely Alzheimer and Parkinson diseases, are developed by a significant portion of the elderly population globally. Extensive research has provided critical insights into the molecular basis of the pathological advancements of these diseases, but an efficient curative therapy seems elusive. A common attribute of NADDs is neuroinflammation due to a chronic inflammatory response within the central nervous system (CNS), which is primarily modulated by microglia. This response within the CNS is positively regulated by cytokines, chemokines, secondary messengers or cyclic nucleotides, and free radicals. Microglia mediated immune activation is regulated by a positive feedback loop in NADDs. The present review focuses on evaluating the crosstalk between inflammatory mediators and microglia, which aggravates both the clinical progression and extent of NADDs by forming a persistent chronic inflammatory milieu within the CNS. We also discuss the role of the human gut microbiota and its effect on NADDs as well as the suitability of targeting toll-like receptors for an immunotherapeutic intervention targeting the deflation of an inflamed milieu within the CNS.


Assuntos
Encéfalo/metabolismo , Demência/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Degeneração Neural/metabolismo , Receptores Toll-Like/metabolismo , Animais , Encéfalo/patologia , Demência/patologia , Humanos , Inflamação/patologia , Microglia/patologia , Degeneração Neural/patologia
19.
Int J Neurosci ; 131(6): 591-598, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32250189

RESUMO

AIM OF THE STUDY: Glioblastoma multiforme (GBM) is the most severe forms of brain cancer, eventually becoming the leading cause of brain cancer-related death worldwide. Owing to the bleak surgical interventions and resistance to the different treatment regime, GBM is a parlous disease demanding newer therapeutical perspective for its treatment. Toll-like receptors (TLRs) are well-known members of pathogen recognition receptors (PRRs) and have been extensively explored for their therapeutic and prophylactic potential in an array of disease including cancer. Recent trends in drug delivery research has shown shift towards delivering short DNA sequences (CpG DNA) to endosomal TLR9 within immune cells (macrophages, dendritic cells, etc.) for the activation of desired inflammatory response using non-agonistic ß-glucan particles; a well-known ligand for Dectin-1 receptors. Our study is therefore focused to explore the role of nano-encapsulated CpG ODN as critical players in polarizing M2 scavenging to much desired pro-inflammatory type. MATERIALS AND METHODS: The nanoparticles entrapping CpG ODN 1826 were prepared by using a fungal polymer Schizophyllan (SPG). The constructed nanoparticles were characterized and assessed for their efficacy on rat glioblastoma cells (C6). RESULTS: The constructed Schizophyllan (SPG) nanoparticles entrapping CpG ODN 1826 (95.3%) were of 25.49 nm in diameter and thus capable of crossing blood-brain barrier. The rat glioblastoma (C6) cells evaluated for intracellular oxidative burst and cytokine levels pre- and post-incubation with nanoparticles exhibited marked elevation in the expression of intracellular ROS and IFN-γ as well as IL-1ß post treatment. CONCLUSION: The findings indicate towards potentiality of repolarizing the M2 macrophages to much desired M1 phase by inducing higgh levels of oxidative burst and inflammatory cytokines. Consequently, the apoptosis was induced in glioblastoma cells establishing the suitablity of CpG ODN carrying nanoformulations as emerging therapeutic intervention for GBM.


Assuntos
Adjuvantes Imunológicos , Neoplasias Encefálicas/tratamento farmacológico , Citocinas/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Lectinas Tipo C , Macrófagos/efeitos dos fármacos , Nanopartículas , Oligodesoxirribonucleotídeos , Sizofirano , Receptor Toll-Like 9/agonistas , Adjuvantes Imunológicos/administração & dosagem , Animais , Linhagem Celular Tumoral , Citocinas/metabolismo , Interferon gama/efeitos dos fármacos , Interferon gama/metabolismo , Interleucina-1beta/efeitos dos fármacos , Interleucina-1beta/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sizofirano/administração & dosagem
20.
Int Immunopharmacol ; 90: 107181, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33249044

RESUMO

Unmethylated CpG motifs with phosphothioate backbone trigger TLR9 to elicit innate immune response characterized by the production of Th1 cytokines. The use of CpG DNA as an adjuvant has established its role in potentiating the humoral and cell mediated vaccine specific immune response. However, none of the synthetic oligodeoxynucleotides (ODNs) know and used till date are associated with the parasite itself. Our group identified a novel CG rich sequence of 14 base pairs from Leishmania donovani genome (Ld CpG ODN) and established it as a TLR9 agonist. The present study was designed to ascertain the adjuvanticity of Ld CpG ODN with soluble leishmanial antigen in experimental model of L. donovani. During the study Schizophyllan (SPG), a fungal polymer was used for encapsulating Ld CpG ODN for efficient endosomal delivery. The synthesized nanovehicles were of nearly 100 nm and localized within endosomes as confirmed by confocal microscopy. Immunization studies displayed the superior ability of synthesized nanovehicles co-administered with parasite antigen in augmenting innate immune response in comparison to ODN, nanoparticles or soluble antigen alone. The response included generation of ROS, NO and iNOS expression followed by proinflammatory cytokine milieu with reduced parasitic load within liver, spleen and bone marrow. These immune-tailored particles in combination with parasitic antigens elicited significant generation of cell mediated response owing to the presence of high levels of CD8+ T-cells and lymphocyte proliferation. Moreover, vaccination regime with synthesized adjuvant also activated humoral immunity by escalating the levels of IgG2 followed by reduced levels of anti-leishmanial IgG and IgG1 antibodies. The findings support the efficacy of Ld CpG ODN as a potential adjuvant against visceral leishmaniasis.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Antígenos de Protozoários/administração & dosagem , Leishmania donovani/imunologia , Leishmaniose Visceral/prevenção & controle , Nanopartículas , Oligodesoxirribonucleotídeos/administração & dosagem , Vacinas Protozoárias/administração & dosagem , Sizofirano/administração & dosagem , Adjuvantes Imunológicos/química , Animais , Antígenos de Protozoários/química , Modelos Animais de Doenças , Composição de Medicamentos , Interações Hospedeiro-Patógeno , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Imunogenicidade da Vacina , Leishmania donovani/patogenicidade , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Masculino , Mesocricetus , Oligodesoxirribonucleotídeos/química , Vacinas Protozoárias/química , Sizofirano/química , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/parasitologia , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/metabolismo , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...