Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(40)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38604153

RESUMO

Nanoscale variations of optical properties in transition metal dichalcogenide (TMD) monolayers can be explored with cathodoluminescence (CL) and electron energy loss spectroscopy (EELS) using electron microscopes. To increase the CL emission intensity from TMD monolayers, the MoSe2flakes are encapsulated in hexagonal boron nitride (hBN), creating van der Waals (VdW) heterostructures. Until now, the studies have been exclusively focused on scanning transmission electron microscopy (STEM-CL) or scanning electron microscopy (SEM-CL), separately. Here, we present results, using both techniques on the same sample, thereby exploring a large acceleration voltage range. We correlate the CL measurements with STEM-EELS measurements acquired with different energy dispersions, to access both the low-loss region at ultra-high spectral resolution, and the core-loss region. This provides information about the weight of the various absorption phenomena including the direct TMD absorption, the hBN interband transitions, the hBN bulk plasmon, and the core losses of the atoms present in the heterostructure. The S(T)EM-CL measurements from the TMD monolayer only show emission from the A exciton. Combining the STEM-EELS and S(T)EM-CL measurements, we can reconstruct different decay pathways leading to the A exciton CL emission. The comparison with SEM-CL shows that this is also a good technique for TMD heterostructure characterization, where the reduced demands on sample preparation are appealing. To demonstrate the capabilities of SEM-CL imaging, we also measured on a SiO2/Si substrate, quintessential in the sample preparation of two-dimensional materials, which is electron-opaque and can only be measured in SEM-CL. The CL-emitting defects of SiO2make this substrate challenging to use, but we demonstrate that this background can be suppressed by using lower electron energy.

2.
ACS Nano ; 18(15): 10417-10426, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557059

RESUMO

We report on the design, realization, and experimental investigation by spatially resolved monochromated electron energy loss spectroscopy (EELS) of high-quality-factor cavities with modal volumes smaller than λ3, with λ being the free-space wavelength of light. The cavities are based on a slot defect in a 2D photonic crystal slab made up of silicon. They are optimized for high coupling of electrons accelerated to 100 kV to quasi-transverse electrical modes polarized along the slot direction. We studied the cavities in two geometries and took advantage of the deep sub-optical wavelength spatial resolution of the electron microscope and high spectral resolution of the monochromator to comprehensively describe the optical excitations of the slab. The first geometry, for which the cavities have been designed, corresponds to an electron beam traveling along the slot direction. The second consists of the electron beam traveling perpendicular to the slab. In both cases, a large series of modes is identified. The dielectric slot mode energies are measured to be in the 0.8-0.85 eV range, as per design, and surrounded by two bands of dielectric and air modes of the photonic structure. The dielectric even slot modes, to which the cavity mode belongs, are highly coupled to the electrons with up to 3.2% probability of creating a slot photon per incident electron. Although the experimental spectral resolution (around 30 meV) alone does not allow to disentangle cavity photons from other slot photons, the excellent agreement between the experiments and finite-difference time-domain simulations allows us to deduce that among the photons created in the slot, around 30% are stored in the cavity mode. A systematic study of the energy and coupling strength as a function of the photonic band gap parameters permits us to foresee an increase of coupling strength by fine-tuning phase-matching. Our work demonstrates free electron coupling to high-quality-factor cavities with low mode densities and sub-λ3 modal volumes, making it an excellent candidate for applications such as quantum nano-optics with free electrons.

3.
Nano Lett ; 24(12): 3678-3685, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38471109

RESUMO

Control over the optical properties of atomically thin two-dimensional (2D) layers, including those of transition metal dichalcogenides (TMDs), is needed for future optoelectronic applications. Here, the near-field coupling between TMDs and graphene/graphite is used to engineer the exciton line shape and charge state. Fano-like asymmetric spectral features are produced in WS2, MoSe2, and WSe2 van der Waals heterostructures combined with graphene, graphite, or jointly with hexagonal boron nitride (h-BN) as supporting or encapsulating layers. Furthermore, trion emission is suppressed in h-BN encapsulated WSe2/graphene with a neutral exciton red shift (44 meV) and binding energy reduction (30 meV). The response of these systems to electron beam and light probes is well-described in terms of 2D optical conductivities of the involved materials. Beyond fundamental insights into the interaction of TMD excitons with structured environments, this study opens an unexplored avenue toward shaping the spectral profile of narrow optical modes for application in nanophotonic devices.

4.
Ultramicroscopy ; 257: 113889, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38056397

RESUMO

Direct electron detection is currently revolutionizing many fields of electron microscopy due to its lower noise, its reduced point-spread function, and its increased quantum efficiency. More specifically to this work, Timepix3 is a hybrid-pixel direct electron detector capable of outputting temporal information of individual hits in its pixel array. Its architecture results in a data-driven detector, also called event-based, in which individual hits trigger the data off the chip for readout as fast as possible. The presence of a pixel threshold value results in an almost readout-noise-free detector while also defining the hit time of arrival and the time the signal stays over the pixel threshold. In this work, we have performed various experiments to calibrate and correct the Timepix3 temporal information, specifically in the context of electron microscopy. These include the energy calibration, and the time-walk and pixel delay corrections, reaching an average temporal resolution throughout the entire pixel matrix of 1.37±0.04ns. Additionally, we have also studied cosmic rays tracks to characterize the charge dynamics along the volume of the sensor layer, allowing us to estimate the limits of the detector's temporal response depending on different bias voltages, sensor thickness, and the electron beam ionization volume. We have estimated the uncertainty due to the ionization volume ranging from about 0.8 ns for 60 keV electrons to 8.8 ns for 300 keV electrons.

5.
Nat Commun ; 14(1): 7612, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993424

RESUMO

The stellar optoelectronic properties of metal halide perovskites provide enormous promise for next-generation optical devices with excellent conversion efficiencies and lower manufacturing costs. However, there is a long-standing ambiguity as to whether the perovskite surface/interface (e.g. structure, charge transfer or source of off-target recombination) or bulk properties are the more determining factor in device performance. Here we fabricate an array of CsPbI3 crystal and hybrid glass composites by sintering and globally visualise the property-performance landscape. Our findings reveal that the interface is the primary determinant of the crystal phases, optoelectronic quality, and stability of CsPbI3. In particular, the presence of a diffusion "alloying" layer is discovered to be critical for passivating surface traps, and beneficially altering the energy landscape of crystal phases. However, high-temperature sintering results in the promotion of a non-stoichiometric perovskite and excess traps at the interface, despite the short-range structure of halide is retained within the alloying layer. By shedding light on functional hetero-interfaces, our research offers the key factors for engineering high-performance perovskite devices.

6.
Small ; 19(50): e2304236, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37616513

RESUMO

Lead mixed-halide perovskites offer tunable bandgaps for optoelectronic applications, but illumination-induced phase segregation can quickly lead to changes in their crystal structure, bandgaps, and optoelectronic properties, especially for the Br-I mixed system because CsPbI3 tends to form a non-perovskite phase under ambient conditions. These behaviors can impact their performance in practical applications. By embedding such mixed-halide perovskites in a glassy metal-organic framework, a family of stable nanocomposites with tunable emission is created. Combining cathodoluminescence with elemental mapping under a transmission electron microscope, this research identifies a direct relationship between the halide composition and emission energy at the nanoscale. The composite effectively inhibits halide ion migration, and consequently, phase segregation even under high-energy illumination. The detailed mechanism, studied using a combination of spectroscopic characterizations and theoretical modeling, shows that the interfacial binding, instead of the nanoconfinement effect, is the main contributor to the inhibition of phase segregation. These findings pave the way to suppress the phase segregation in mixed-halide perovskites toward stable and high-performance optoelectronics.

11.
Nat Commun ; 14(1): 4442, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488103

RESUMO

The synergy between free electrons and light has recently been leveraged to reach an impressive degree of simultaneous spatial and spectral resolution, enabling applications in microscopy and quantum optics. However, the required combination of electron optics and light injection into the spectrally narrow modes of arbitrary specimens remains a challenge. Here, we demonstrate microelectronvolt spectral resolution with a sub-nanometer probe of photonic modes with quality factors as high as 104. We rely on mode matching of a tightly focused laser beam to whispering gallery modes to achieve a 108-fold increase in light-electron coupling efficiency. By adapting the shape and size of free-space optical beams to address specific physical questions, our approach allows us to interrogate any type of photonic structure with unprecedented spectral and spatial detail.

12.
Sci Adv ; 8(40): eabq4947, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36206335

RESUMO

Following optical excitations' life span from creation to decay into photons is crucial in understanding materials photophysics. Macroscopically, this is studied using optical techniques, such as photoluminescence excitation spectroscopy. However, excitation and emission pathways can vary at nanometer scales, preventing direct access, as no characterization technique has the relevant spatial, spectral, and time resolution. Here, using combined electron spectroscopies, we explore excitations' creation and decay in two representative optical materials: plasmonic nanoparticles and luminescent two-dimensional layers. The analysis of the energy lost by an exciting electron that is coincident in time with a visible-ultraviolet photon unveils the decay pathways from excitation toward light emission. This is demonstrated for phase-locked (coherent) interactions (localized surface plasmons) and non-phase-locked ones (point defect excited states). The developed cathodoluminescence excitation spectroscopy images energy transfer pathways at the nanometer scale, widening the available toolset to explore nanoscale materials.

13.
Ultramicroscopy ; 239: 113539, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35598348

RESUMO

The acquisition of a hyperspectral image is nowadays a standard technique used in the scanning transmission electron microscope. It relates the spatial position of the electron probe to the spectral data associated with it. In the case of electron energy loss spectroscopy (EELS), frame-based hyperspectral acquisition is much slower than the achievable rastering time of the scan unit (SU), which sometimes leads to undesirable effects in the sample, such as electron irradiation damage, that goes unperceived during frame acquisition. In this work, we have developed an event-based hyperspectral EELS by using a Timepix3 application-specific integrated circuit detector with two supplementary time-to-digital (TDC) lines embedded. In such a system, electron events are characterized by their positional and temporal coordinates, but TDC events only by temporal ones. By sending reference signals from the SU to the TDC line, it is possible to reconstruct the entire spectral image with SU-limited scanning pixel dwell time and thus acquire, with no additional cost, a hyperspectral image at the same rate as that of a single channel detector, such as annular dark-field. To exemplify the possibilities behind event-based hyperspectral EELS, we have studied the decomposition of calcite (CaCO3) into calcium oxide (CaO) and carbon dioxide (CO2) under the electron beam irradiation.

14.
ACS Appl Nano Mater ; 5(4): 5508-5515, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35492438

RESUMO

III-V semiconductors outperform Si in many optoelectronics applications due to their high carrier mobility, efficient light emission and absorption processes, and the possibility to engineer their band gap through alloying. However, complementing Si technology with III-V semiconductors by integration on Si(100) remains a challenge still today. Vertical nanospades (NSPDs) are quasi-bi-crystal III-V nanostructures that grow on Si(100). Here, we showcase the potential of these structures in optoelectronics application by demonstrating InGaAs heterostructures on GaAs NSPDs that exhibit bright emission in the near-infrared region. Using cathodoluminescence hyperspectral imaging, we are able to study light emission properties at a few nanometers of spatial resolution, well below the optical diffraction limit. We observe a symmetric spatial luminescence splitting throughout the NSPD. We correlate this characteristic to the structure's crystal nature, thus opening new perspectives for dual wavelength light-emitting diode structures. This work paves the path for integrating optically active III-V structures on the Si(100) platform.

15.
Microsc Microanal ; : 1-9, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35431023

RESUMO

Analytical studies of nanoparticles (NPs) are frequently based on huge datasets derived from hyperspectral images acquired using scanning transmission electron microscopy. These large datasets require machine learning computational tools to reduce dimensionality and extract relevant information. Principal component analysis (PCA) is a commonly used procedure to reconstruct information and generate a denoised dataset; however, several open questions remain regarding the accuracy and precision of reconstructions. Here, we use experiments and simulations to test the effect of PCA processing on data obtained from AuAg alloy NPs a few nanometers wide with different compositions. This study aims to address the reliability of chemical quantification after PCA processing. Our results show that the PCA treatment mitigates the contribution of Poisson noise and leads to better quantification, indicating that denoised results may be reliable from the point of view of both uncertainty and accuracy for properly planned experiments. However, the initial data need to be of sufficient quality: these results can only be obtained if the signal-to-noise ratio of input data exceeds a minimal value to avoid the occurrence of random noise bias in the PCA reconstructions.

16.
Nano Lett ; 22(1): 319-327, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34907775

RESUMO

Whispering-gallery mode resonators host multiple trapped narrow-band circulating optical resonances that find applications in quantum electrodynamics, optomechanics, and sensing. However, the spherical symmetry and low field leakage of dielectric microspheres make it difficult to probe their high-quality optical modes using far-field radiation. Even so, local field enhancement from metallic nanoparticles (MNPs) coupled to the resonators can interface the optical far field and the bounded cavity modes. In this work, we study the interaction between whispering-gallery modes and MNP surface plasmons with nanometric spatial resolution by using electron-beam spectroscopy with a scanning transmission electron microscope. We show that gallery modes are induced over a selective spectral range of the nanoparticle plasmons, and additionally, their polarization can be controlled by the induced dipole moment of the MNP. Our study demonstrates a viable mechanism to effectively excite high-quality-factor whispering-gallery modes and holds potential for applications in optical sensing and light manipulation.

17.
Nano Lett ; 21(24): 10178-10185, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878799

RESUMO

Structural, electronic, and chemical nanoscale modifications of transition metal dichalcogenide monolayers alter their optical properties. A key missing element for complete control is a direct spatial correlation of optical response to nanoscale modifications due to the large gap in spatial resolution between optical spectroscopy and nanometer-resolved techniques. Here, we bridge this gap by obtaining nanometer-resolved optical properties using electron spectroscopy at cryogenic temperatures, specifically electron energy loss spectroscopy for absorption and cathodoluminescence for emission, which are then directly correlated to chemical and structural information. In an h-BN/WS2/h-BN heterostructure, we observe local modulation of the trion (X-) emission due to tens of nanometer wide dielectric patches. Trion emission also increases in regions where charge accumulation occurs, close to the carbon film supporting the heterostructures. The localized exciton emission (L) detected here is not correlated to strain above 1%, suggesting point defects might be involved in their formation.

18.
Science ; 374(6567): 621-625, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34709926

RESUMO

Lead halide perovskite (LHP) semiconductors show exceptional optoelectronic properties. Barriers for their applications, however, lie in their polymorphism, instability to polar solvents, phase segregation, and susceptibility to the leaching of lead ions. We report a family of scalable composites fabricated through liquid-phase sintering of LHPs and metal-organic framework glasses. The glass acts as a matrix for LHPs, effectively stabilizing nonequilibrium perovskite phases through interfacial interactions. These interactions also passivate LHP surface defects and impart bright, narrow-band photoluminescence with a wide gamut for creating white light-emitting diodes (LEDs). The processable composites show high stability against immersion in water and organic solvents as well as exposure to heat, light, air, and ambient humidity. These properties, together with their lead self-sequestration capability, can enable breakthrough applications for LHPs.

19.
Science ; 372(6547): 1181-1186, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34112689

RESUMO

Coherent optical excitations in two-dimensional (2D) materials, 2D polaritons, can generate a plethora of optical phenomena that arise from the extraordinary dispersion relations that do not exist in regular materials. Probing of the dynamical phenomena of 2D polaritons requires simultaneous spatial and temporal imaging capabilities and could reveal unknown coherent optical phenomena in 2D materials. Here, we present a spatiotemporal measurement of 2D wave packet dynamics, from its formation to its decay, using an ultrafast transmission electron microscope driven by femtosecond midinfrared pulses. The ability to coherently excite phonon-polariton wave packets and probe their evolution in a nondestructive manner reveals intriguing dispersion-dependent dynamics that includes splitting of multibranch wave packets and, unexpectedly, wave packet deceleration and acceleration. Having access to the full spatiotemporal dynamics of 2D wave packets can be used to illuminate puzzles in topological polaritons and discover exotic nonlinear optical phenomena in 2D materials.

20.
Nano Lett ; 21(9): 4071-4077, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33900086

RESUMO

Hybrid/moiré interlayer and intralayer excitons have been realized in twisted two-dimensional transition metal chalcogenides (2D-TMD) due to variation in local moiré potential within a moiré supercell. Though moiré excitons have been detected in TMD heterostructures by macroscopic spectroscopic techniques, their spatial distribution is experimentally unknown. In the present work, using high-resolution scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS), we explore the effect of the twist angle in MoS2/WSe2 heterostructures. We observe weak interaction between the layers at higher twist angles (>5°) and stronger interaction for lower twist angles. The optical response of the heterostructure varies within the moiré supercell, with a lower energy absorption peak appearing in regions with the AA stacking.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...