Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987965

RESUMO

Catalysis is one of the most important processes in nature, science, and technology, that enables the energy efficient synthesis of essential organic compounds, pharmaceutically active substances, and molecular energy sources. In nature, catalytic reactions typically occur in aqueous environments involving multiple catalytic sites. To prevent the deactivation of catalysts in water or avoid unwanted cross-reactions, catalysts are often site-isolated in nanopockets or separately stored in compartments. These concepts have inspired the design of a range of synthetic nanoreactors that allow otherwise unfeasible catalytic reactions in aqueous environments. Since the field of nanoreactors is evolving rapidly, we here summarize-from a personal perspective-prominent and recent examples for polymer nanoreactors with emphasis on their synthesis and their ability to catalyze reactions in dispersion. Examples comprise the incorporation of catalytic sites into hydrophobic nanodomains of single chain polymer nanoparticles, molecular polymer nanoparticles, and block copolymer micelles and vesicles. We focus on catalytic reactions mediated by transition metal and organocatalysts, and the separate storage of multiple catalysts for one-pot cascade reactions. Efforts devoted to the field of nanoreactors are relevant for catalytic chemistry and nanotechnology, as well as the synthesis of pharmaceutical and natural compounds. Optimized nanoreactors will aid in the development of more potent catalytic systems for green and fast reaction sequences contributing to sustainable chemistry by reducing waste of solvents, reagents, and energy.

2.
ACS Appl Mater Interfaces ; 12(35): 39586-39594, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805896

RESUMO

Hybrid inorganic/block copolymer (BCP) materials have become increasingly relevant for application in heterogeneous catalysis, microelectronics, and nanomedicine. While block copolymer templates are widely used for the formation of inorganic nanostructures, multicompartment templates could give access to more complex shapes and inner structures that are challenging to obtain with traditional processes. Here, we report the formation and characterization of hybrid platinum/polymer helices using multicompartment nanofibers (MCNFs) of polystyrene-block-polybutadiene-block-poly(tert-butyl methacrylate) (PS-b-PB-b-PT) triblock terpolymers as templates. Cross-linking of a PS-b-PB-b-PT helix-on-cylinder morphology resulted in uniform nanofibers with a diameter of 90 nm and a length of several micrometers, as well as an inner PB double helix (diameter 35 nm, pitch 25 nm, core 12 nm). The PB double helix served as template for the sol-gel reaction of H2PtCl6 into hybrid Pt double helices (Pt@MCNFs) as verified by STEM, electron tomography, AFM, and SEM. Carbonization of the Pt hybrids into Pt decorated carbon nanofibers (Pt@C) was followed in situ on a TEM heating state. Gradual heating from 25 to 1000 °C induced fusion of amorphous Pt NPs into larger crystalline Pt NP, which sheds light on the aging of Pt NPs in BCP scaffolds under high temperature conditions. The Pt@MCNFs were further sulfonated and incorporated into a filter to catalyze a model compound in a continuous flow process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...