Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 113(29): 9741-8, 2009 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-19603838

RESUMO

Polyimide (PI) and PI nanocomposite fibers containing different amounts of multiwalled carbon nanotubes (MWNTs) were produced for the first time by electrospinning. The membranes prepared were composed of highly aligned nanofibers and showed significant enhancement in mechanical properties, compared with the membranes prepared by conventional solution-casting method. Surface-functionalized MWNTs were homogeneously dispersed and highly aligned along the fiber axis, whereas most of the pristine MWNTs formed aggregates or bundles and even protruded out of the electrospun nanofibers. The thermal and mechanical properties of polyimide matrix were significantly improved with the incorporation of MWNTs. And the elongation at break of the nanofiber membranes can reach 100% for the nanotube loading level of 3.5 wt %. It was found that electrospinning the in situ prepared MWNT/poly(amic acid) solution can achieve better polymer chain orientation and thus better mechanical properties of the as-prepared membranes. Our study demonstrates a good example for the preparation of high-performance polymer/carbon nanotube nanocomposites by using electrospinning.


Assuntos
Membranas Artificiais , Nanoestruturas/química , Nanotubos de Carbono/química , Resinas Sintéticas/química , Eletroquímica , Tamanho da Partícula , Propriedades de Superfície , Temperatura
2.
Acta Biomater ; 5(6): 2002-12, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19251499

RESUMO

Natural source poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] (PHBV) with a low hydroxyvalerate (HV) content ( approximately 8wt.%) was modified by blending it with poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene oxide) (HE) alternating block copolymer. We hypothesized that the adjoining PHB segments could improve the miscibility of the poly(ethylene oxide) segments of HE with the PHBV matrix and therefore improve the physical properties of the PHBV/HE blends. A differential scanning calorimetry study revealed the improved miscibility of PEO segments of HE characterized by the interference of the crystallization of PHBV. The decrease in water contact angle and the increase in equilibrium water uptake of the PHBV/HE blends indicated that both the surface and bulk hydrophilicity of PHBV could be improved through blending HE. The mechanical properties of the hydrated PHBV/HE blends were assessed by measuring their tensile strength. In contrast to the hydrated natural source PHBV, which failed in a brittle manner, the hydrated PHBV/HE blends were ductile. Their strain at break increased with increasing HE content, reaching a maximum of 394% at an HE content of 15wt.%. The excellent integrity of the PHBV/HE blends in water is attributed to the strong affinity between the PHB segments of HE and the PHBV matrix. Platelet adhesion on the film surface of the PHBV/HE blends was investigated in vitro to evaluate their blood compatibility. The results demonstrated that the PHBV/HE blends effectively resisted the adhesion of platelets due to the anchored PEO segments from HE on the film surface.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Plaquetas/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Poliésteres/química , Poliésteres/farmacologia , Células Cultivadas , Força Compressiva , Humanos , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Porosidade , Proibitinas , Propriedades de Superfície
3.
Langmuir ; 24(23): 13621-6, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-18956851

RESUMO

Polyvinylidene difluoride (PVDF) solutions containing a very low concentration of single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) of similar surface chemistry, respectively, were electrospun, and the nanofibers formed were collected using a modified rotating disk collector. The polymorphic behavior and crystal orientation of the nanofibers were studied using wide-angle X-ray diffraction and infrared spectroscopy, while the nanotube alignment and interfacial interactions in the nanofibers were probed by transmission electron microscopy and Raman spectroscopy. It is shown that the interfacial interaction between the SWCNTs and PVDF and the extensional force experienced by the nanofibers in the electrospinning and collection processes can work synergistically to induce highly oriented beta-form crystallites extensively. In contrast, the MWCNTs could not be well aligned along the nanofiber axis, which leads to a lower degree of crystal orientation.


Assuntos
Nanotubos de Carbono/química , Polivinil/química , Cristalização , Condutividade Elétrica , Eletroquímica , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...