Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 23(8): 2016-2028, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36891683

RESUMO

Magnetic particles are routinely used in many biochemical techniques. As such, the manipulation of these particles is of paramount importance for proper detection and assay preparation. This paper describes a magnetic manipulation and detection paradigm that allows sensing and handling highly sensitive magnetic bead-based assays. The simple manufacturing process presented in this manuscript employs a CNC machining technique and an iron microparticle-doped PDMS (Fe-PDMS) compound to create magnetic microstructures that enhance magnetic forces for magnetic bead confinement. Said confinement, generates increases in local concentrations at the detection site. Higher local concentrations increase the magnitude of the detection signal, leading to higher assay sensitivity and lower limit of detection (LOD). Furthermore, we demonstrate this characteristic signal enhancement in both fluorescence and electrochemical detection techniques. We expect this new technique to allow users to design fully integrated magnetic bead-based microfluidic devices with the goal of preventing sample losses and enhancing signal magnitudes in biological experiments and assays.

2.
J Vis Exp ; (161)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32716373

RESUMO

This paper aims to present a protocol to form smooth and well-controlled films of silver/silver chloride (Ag/AgCl) with designated coverage on top of thin film silver electrodes. Thin film silver electrodes sized 80 µm x 80 µm and 160 µm x 160 µm were sputtered on quartz wafers with a chromium/gold (Cr/Au) layer for adhesion. After passivation, polishing and cathodic cleaning processes, the electrodes underwent galvanostatic oxidation with consideration of Faraday's Law of Electrolysis to form smooth layers of AgCl with a designated degree of coverage on top of the silver electrode. This protocol is validated by inspection of scanning electron microscope (SEM) images of the surface of the fabricated Ag/AgCl thin film electrodes, which highlights the functionality and performance of the protocol. Sub-optimally fabricated electrodes are fabricated as well for comparison. This protocol can be widely used to fabricate Ag/AgCl electrodes with specific impedance requirements (e.g., probing electrodes for impedance sensing applications like impedance flow cytometry and interdigitated electrode arrays).


Assuntos
Eletrodos , Compostos de Prata/química , Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...