Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 14(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38921427

RESUMO

Breonadia salicina (Vahl) Hepper & J.R.I. Wood is widely distributed throughout Africa. It is used ethnobotanically to treat various diseases. However, the metabolic profile of the Breonadia species is not well characterized and the metabolites that are responsible for the bioactivity of this plant remain unknown. Therefore, there is a need to determine the phytochemical and bioactivity profile to identify metabolites that contribute to the antidiabetic, anti-inflammatory and antiproliferation activity, including the genotoxicity and cytotoxic effects, of Breonadia salicina. The study is aimed at exploring the metabolomic profile antidiabetic, anti-inflammatory and antiproliferation activity, as well as the genotoxicity and cytotoxicity effects, of constituents of B. salicina. The compounds in the B. salicina extract were analyzed by ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS), and the resultant data were further analyzed using a molecular networking approach. The crude stem bark and root extracts showed the highest antidiabetic activity against α-amylase at the lowest test concentration of 62.5 µg/mL, with 74.53 ± 0.74% and 79.1 ± 1.5% inhibition, respectively. However, the crude stem bark and root extracts showed the highest antidiabetic activity against α-glucosidase at the lowest test concentration of 31.3 µg/mL, with 98.20 ± 0.15% and 97.98 ± 0.22% inhibition, respectively. The crude methanol leaf extract showed a decrease in the nitrite concentration at the highest concentration of 200 µg/mL, with cell viability of 90.34 ± 2.21%, thus showing anti-inflammatory activity. No samples showed significant cytotoxic effects at a concentration of 10 µg/mL against HeLa cells. Furthermore, a molecular network of Breonadia species using UPLC-QTOF-MS with negative mode electrospray ionization showed the presence of organic oxygen compounds, lipids, benzenoids, phenylpropanoids and polyketides. These compound classes were differentially distributed in the three different plant parts, indicating the chemical differences between the stem bark, root and leaf extracts of B. salicina. Therefore, the identified compounds may contribute to the antidiabetic and anti-inflammatory activity of Breonadia salicina. The stem bark, root and leaf extracts of B. salicina yielded thirteen compounds identified for the first time in this plant, offering a promising avenue for the discovery of new lead drugs for the treatment of diabetes and inflammation. The use of molecular networking produced a detailed phytochemical overview of this Breonadia species. The results reported in this study show the importance of searching for bioactive compounds from Breonadia salicina and provide new insights into the phytochemical characterization and bioactivity of different plant parts of Breonadia salicina.

2.
Heliyon ; 10(2): e24068, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298618

RESUMO

This study involves the investigation of various plant parts of Breonadia salicina (Vahl) Hepper and J.R.I. Wood across multiple consecutive seasons. It aims to delve into the phytochemistry of these different plant parts and establish connections between the findings and their biological activities. This comprehensive approach employs metabolomics techniques, with the ultimate goal of exploring the potential for drug development. Samples were collected in Fondwe, a village in Limpopo (South Africa), based on local reports of the efficacy of this plant used by traditional healers in the area. The antimalarial and antitrypanosomal activities of samples collected over the seasons were determined with the parasite lactate dehydrogenase (pLDH) and specific Trypanosoma brucei assays, respectively. Consequently, a total of 24 compounds were tentatively identified through ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Chemical profiles of the different plant parts of Breonadia salicina collected in different seasons produced contrasting metabolic profiles. Chemometric analysis of the UPLC-QTOF-MS data enabled us to determine the chemical variability of the crude stem bark, root and leaf extracts (n = 48) collected over four consecutive seasons by evaluating the metabolomics fingerprinting of the samples using an untargeted approach. Principal component analysis (PCA), hierarchical cluster analysis (HCA), and partial least squares discriminant analysis (PLS-DA) indicated the existence of two key clusters that are linked to the root, stem bark, and leaves. The stem and root chemistry differed from that of the leaves. Seasonal variations were noted in each plant part, with autumn and winter samples closely grouped compared to spring and summer samples in the methanol leaf extracts. Biochemometric analysis could not relate specific compounds to the antimalarial and antitrypanosomal activities of the active extracts, underscoring the intricate interactions among the secondary metabolites. This study further confirms the optimal plant parts to collect in each season for the most effective antimalarial and antitrypanosomal activities.

3.
Front Pediatr ; 11: 1247638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645034

RESUMO

Introduction: International guidelines recommend a multi-faceted approach for successful diagnoses of primary ciliary dyskinesia (PCD). In the absence of a gold standard test, a combination of genetic testing/microscopic analysis of structure and function/nasal nitric oxide measurement is used. In resource-limited settings, often none of the above tests are available, and in South Africa, only transmission electron microscopy (TEM) is available in central anatomical pathology departments. The aim of this study was to describe the clinical and ultrastructural findings of suspected PCD cases managed by pediatric pulmonologists at a tertiary-level state funded hospital in Johannesburg. Methods: Nasal brushings were taken from 14 children with chronic respiratory symptoms in keeping with a PCD phenotype. Ultrastructural analysis in accordance with the international consensus guidelines for TEM-PCD diagnostic reporting was undertaken. Results: TEM observations confirmed 43% (6) of the clinically-suspected cases (hallmark ultrastructural defects in the dynein arms of the outer doublets), whilst 57% (8) required another PCD testing modality to support ultrastructural observations. Of these, 25% (2) had neither ultrastructural defects nor did they present with bronchiectasis. Of the remaining cases, 83% (5) had very few ciliated cells (all of which were sparsely ciliated), together with goblet cell hyperplasia. There was the apparent absence of ciliary rootlets in 17% (1) case. Discussion: In resource-limited settings in which TEM is the only available testing modality, confirmatory and probable diagnoses of PCD can be made to facilitate early initiation of treatment of children with chronic respiratory symptoms.

4.
Molecules ; 26(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771114

RESUMO

Breonadia salicina (Vahl) Hepper and J.R.I. Wood is widely used in South Africa and some other African countries for treatment of various infectious diseases such as diarrhea, fevers, cancer, diabetes and malaria. However, little is known about the active constituents associated with the biological activities. This study is aimed at exploring the metabolomics profile and antioxidant constituents of B. salicina. The chemical profiles of the leaf, stem bark and root of B. salicina were comprehensively characterized using proton nuclear magnetic resonance (1H-NMR) spectroscopy and ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). The antioxidant activities of the crude extracts, fractions and pure compounds were determined using the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging and reducing power assays. A total of 25 compounds were tentatively identified using the UPLC-QTOF-MS. Furthermore, the 1H-NMR fingerprint revealed that the different parts of plant had differences and similarities among the different crude extracts and fractions. The crude extracts and fractions of the root, stem bark and leaf showed the presence of α-glucose, ß-glucose, glucose and fructose. However, catechin was not found in the stem bark crude extracts but was found in the fractions of the stem bark. Lupeol was present only in the root crude extract and fractions of the stem bark. Furthermore, 5-O-caffeoylquinic acid was identified in the methanol leaf extract and its respective fractions, while the crude extracts and fractions from the root and dichloromethane leaf revealed the presence of hexadecane. Column chromatography and preparative thin-layer chromatography were used to isolate kaempferol 3-O-(2″-O-galloyl)-glucuronide, lupeol, d-galactopyranose, bodinioside Q, 5-O-caffeoylquinic acid, sucrose, hexadecane and palmitic acid. The crude methanol stem bark showed the highest antioxidant activity in the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity with an IC50 value of 41.7263 ± 7.6401 µg/mL, whereas the root crude extract had the highest reducing power activity with an IC0.5 value of 0.1481 ± 0.1441 µg/mL. Furthermore, the 1H-NMR and UPLC-QTOF-MS profiles showed the presence of hydroxycinnamic acids, polyphenols and flavonoids. According to a literature survey, these phytochemicals have been reported to display antioxidant activities. Therefore, the identified hydroxycinnamic acid (caffeic acid), polyphenol (ellagic acid) and flavonoids (catechin and (epi) gallocatechin) significantly contribute to the antioxidant activity of the different parts of plant of B. salicina. The results obtained in this study provides information about the phytochemistry and phytochemical compositions of Breonadia salicina, confirming that the species is promising in obtaining constituents with medicinal potential primarily antioxidant potential.


Assuntos
Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Metaboloma , Metabolômica , Espectroscopia de Prótons por Ressonância Magnética , Rubiaceae/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Antioxidantes/farmacologia , Humanos , Metabolômica/métodos , Especificidade de Órgãos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
5.
Molecules ; 25(17)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825216

RESUMO

As part of an ongoing study of natural products from local medicinal plants, the methanol extract of stem bark of Rauvolfia caffra Sond was investigated for biological activity. Column chromatography and preparative thin-layer chromatography were used to isolate lupeol (1), raucaffricine (2), N-methylsarpagine (3), and spegatrine (4). The crude extract, fractions and isolated compounds were tested for anti-oxidant, antitrypanosomal and anti-proliferation activities. Two fractions displayed high DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity and reducing power with IC50 (The half maximal inhibitory concentration) and IC0.5 values of 0.022 ± 0.003 mg/mL and 0.036 ± 0.007 mg/mL, and 0.518 ± 0.044 mg/mL and 1.076 ± 0.136 mg/mL, respectively. Spegatrine (4) was identified as the main antioxidant compound in R. caffra with IC50 and IC0.5 values of 0.119 ± 0.067 mg/mL and 0.712 ± 0 mg/mL, respectively. One fraction displayed high antitrypanosomal activity with an IC50 value of 18.50 µg/mL. However, the major constituent of this fraction, raucaffricine (2), was not active. The crude extract, fractions and pure compounds did not display any cytotoxic effect at a concentration of 50 µg/mL against HeLa cells. This study shows directions for further in vitro studies on the antioxidant and antitrypanosomal activities of Rauvolfia caffra Sond.


Assuntos
Antioxidantes , Rauwolfia/química , Tripanossomicidas , Trypanosoma brucei brucei/crescimento & desenvolvimento , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Células HeLa , Humanos , Tripanossomicidas/química , Tripanossomicidas/isolamento & purificação , Tripanossomicidas/farmacologia
6.
Molecules ; 24(1)2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30583480

RESUMO

In this study, the chemical profile of a crude methanol extract of Rauvolfia caffra Sond was determined by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Column chromatography and preparative thin layer chromatography were used to isolate three indole alkaloids (raucaffricine, N-methylsarpagine and spegatrine) and one triterpenoid (lupeol). The antiplasmodial activity was determined using the parasite lactate dehydrogenase (pLDH) assay. The UPLC-MS profile of the crude extract reveals that the major constituents of R. caffra are raucaffricine (m/z 513.2) and spegatrine (m/z 352.2). Fraction 3 displayed the highest antiplasmodial activity with an IC50 of 6.533 µg/mL. However, raucaffricine, isolated from the active fraction did not display any activity. The study identifies the major constituents of R. caffra and also demonstrates that the major constituents do not contribute to the antiplasmodial activity of R. caffra.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rauwolfia/química , Antimaláricos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Compostos Fitoquímicos/química , Extratos Vegetais/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...