Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(10): 8261-8270, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38690886

RESUMO

This study aimed to develop a novel radiotracer using trastuzumab and the long-lived [52Mn]Mn isotope for HER2-targeted therapy selection and monitoring. A new Mn(II) chelator, BPPA, synthesized from a rigid bispyclen platform possessing a picolinate pendant arm, formed a stable and inert Mn(II) complex with favorable relaxation properties. BPPA was converted into a bifunctional chelator (BFC), conjugated to trastuzumab, and labeled with [52Mn]Mn isotope. In comparison to DOTA-GA-trastuzumab, the BPPA-trastuzumab conjugate exhibits a labeling efficiency with [52Mn]Mn approximately 2 orders of magnitude higher. In female CB17 SCID mice bearing 4T1 (HER2-) and MDA-MB-HER2+ (HER2+) xenografts, [52Mn]Mn-BPPA-trastuzumab demonstrated superior uptake in HER2+ cells on day 3, with a 3-4 fold difference observed on day 7. Overall, the hexadentate BPPA chelator proves to be exceptional in binding Mn(II). Upon coupling with trastuzumab as a BFC ligand, it becomes an excellent imaging probe for HER2-positive tumors. [52Mn]Mn-BPPA-trastuzumab enables an extended imaging time window and earlier detection of HER2-positive tumors with superior tumor-to-background contrast.


Assuntos
Manganês , Camundongos SCID , Tomografia por Emissão de Pósitrons , Receptor ErbB-2 , Trastuzumab , Animais , Feminino , Camundongos , Linhagem Celular Tumoral , Quelantes/química , Quelantes/síntese química , Manganês/química , Manganês/metabolismo , Camundongos Endogâmicos BALB C , Ácidos Picolínicos/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Receptor ErbB-2/metabolismo , Distribuição Tecidual , Trastuzumab/química
2.
J Chem Phys ; 148(12): 123332, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29604893

RESUMO

Cell adhesion complexes (CACs), which are activated by ligand binding, play key roles in many cellular functions ranging from cell cycle regulation to mediation of cell extracellular matrix adhesion. Inspired by single molecule pulling experiments using atomic force spectroscopy on leukocyte function-associated antigen-1 (LFA-1), expressed in T-cells, bound to intercellular adhesion molecules (ICAM), we performed constant loading rate (rf) and constant force (F) simulations using the self-organized polymer model to describe the mechanism of ligand rupture from CACs. The simulations reproduce the major experimental finding on the kinetics of the rupture process, namely, the dependence of the most probable rupture forces (f*s) on ln rf (rf is the loading rate) exhibits two distinct linear regimes. The first, at low rf, has a shallow slope, whereas the slope at high rf is much larger, especially for a LFA-1/ICAM-1 complex with the transition between the two occurring over a narrow rf range. Locations of the two transition states (TSs) extracted from the simulations show an abrupt change from a high value at low rf or constant force, F, to a low value at high rf or F. This unusual behavior in which the CACs switch from one brittle (TS position is a constant over a range of forces) state to another brittle state is not found in forced-rupture in other protein complexes. We explain this novel behavior by constructing the free energy profiles, F(Λ)s, as a function of a collective reaction coordinate (Λ), involving many key charged residues and a critical metal ion (Mg2+). The TS positions in F(Λ), which quantitatively agree with the parameters extracted using the Bell-Evans model, change abruptly at a critical force, demonstrating that it, rather than the molecular extension, is a good reaction coordinate. Our combined analyses using simulations performed in both the pulling modes (constant rf and F) reveal a new mechanism for the two loading regimes observed in the rupture kinetics in CACs.


Assuntos
Complexos de Coordenação/química , Antígeno-1 Associado à Função Linfocitária/química , Adesão Celular , Íons , Cinética , Ligantes , Antígeno-1 Associado à Função Linfocitária/fisiologia , Magnésio/química , Microscopia de Força Atômica , Fenômenos Físicos
3.
J Am Chem Soc ; 137(34): 10970-8, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26267166

RESUMO

We investigate the conformations of DNA-like stiff chains, characterized by contour length (L) and persistence length (lp), in a variety of crowded environments containing monodisperse soft spherical (SS) and spherocylindrical (SC) particles, a mixture of SS and SC, and a milieu mimicking the composition of proteins in the Escherichia coli cytoplasm. The stiff chain, whose size modestly increases in SS crowders up to ϕ ≈ 0.1, is considerably more compact at low volume fractions (ϕ ≤ 0.2) in monodisperse SC particles than in a medium containing SS particles. A 1:1 mixture of SS and SC crowders induces greater chain compaction than the pure SS or SC crowders at the same ϕ, with the effect being highly nonadditive. We also discover a counterintuitive result that the polydisperse crowding environment, mimicking the composition of a cell lysate, swells the DNA-like polymer, which is in stark contrast to the size reduction of flexible polymers in the same milieu. Trapping of the stiff chain in a fluctuating tube-like environment created by large-sized crowders explains the dramatic increase in size and persistence length of the stiff chain. In the polydisperse medium, mimicking the cellular environment, the size of the DNA (or related RNA) is determined by L/lp. At low L/lp, the size of the polymer is unaffected, whereas there is a dramatic swelling at an intermediate value of L/lp. We use these results to provide insights into recent experiments on crowding effects on RNA and also make testable predictions.


Assuntos
DNA Bacteriano/química , Escherichia coli/química , Polímeros/química , Citoplasma/química , Modelos Moleculares , Tamanho da Partícula
4.
J Chem Phys ; 136(23): 235103, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22779622

RESUMO

Force-extension curves (FECs), which quantify the response of a variety of biomolecules subject to mechanical force (f), are often quantitatively fit using worm-like chain (WLC) or freely jointed chain (FJC) models. These models predict that the chain extension, x, normalized by the contour length increases linearly at small f and at high forces scale as x ~ (1 - f(-α)), where α = 0.5 for WLC and unity for FJC. In contrast, experiments on single-stranded DNA (ssDNA) show that over a range of f and ionic concentration, x scales as x ~ ln f, which cannot be explained using WLC or FJC models. Using theory and simulations we show that this unusual behavior in FEC in ssDNA is due to sequence-independent polyelectrolyte effects. We show that the x ~ ln f arises because in the absence of force the tangent correlation function, quantifying chain persistence, decays algebraically on length scales on the order of the Debye length. Our theory, which is most appropriate for monovalent salts, quantitatively fits the experimental data and further predicts that such a regime is not discernible in double-stranded DNA.


Assuntos
DNA de Cadeia Simples/química , Simulação por Computador , Eletrólitos/química , Modelos Químicos , Conformação de Ácido Nucleico , Sais/química , Estresse Mecânico
5.
Macromolecules ; 43(9): 4394-4400, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29225374

RESUMO

We provide a unified theory for the high force entropic elasticity of biopolymers solely in terms of the persistence length, ξp , and the monomer spacing, a. When the force f>ℱ h ~ kBTξp /a2 the biopolymers behave as freely jointed chains (FJCs) while in the range ℱ l ~ kBT/ξp

6.
J Phys Chem B ; 112(19): 6094-106, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18269274

RESUMO

We investigate the kinetics of loop formation in ideal flexible polymer chains (the Rouse model), and polymers in good and poor solvents. We show for the Rouse model, using a modification of the theory of Szabo, Schulten, and Schulten, that the time scale for cyclization is tau(c) approximately tau(0)N(2) (where tau(0) is a microscopic time scale and N is the number of monomers), provided the coupling between the relaxation dynamics of the end-to-end vector and the looping dynamics is taken into account. The resulting analytic expression fits the simulation results accurately when a, the capture radius for contact formation, exceeds b, the average distance between two connected beads. Simulations also show that when a < b, tau(c) approximately N(alpha)(tau), where 1.5 < alpha(tau) < or = 2 in the range 7 < N < 200 used in the simulations. By using a diffusion coefficient that is dependent on the length scales a and b (with a < b), which captures the two-stage mechanism by which looping occurs when a < b, we obtain an analytic expression for tauc that fits the simulation results well. The kinetics of contact formation between the ends of the chain are profoundly effected when interactions between monomers are taken into account. Remarkably, for N < 100, the values of tau(c) decrease by more than 2 orders of magnitude when the solvent quality changes from good to poor. Fits of the simulation data for tau(c) to a power law in N (tau(c) approximately N(alpha)(tau)) show that alpha(tau) varies from about 2.4 in a good solvent to about 1.0 in poor solvents. The effective exponent alpha(tau) decreases as the strength of the attractive monomer-monomer interactions increases. Loop formation in poor solvents, in which the polymer adopts dense, compact globular conformations, occurs by a reptation-like mechanism of the ends of the chain. The time for contact formation between beads that are interior to the chain in good solvents changes nonmonotonically as the loop length varies. In contrast, the variation in interior loop closure time is monotonic in poor solvents. The implications of our results for contact formation in polypeptide chains, RNA, and single-stranded DNA are briefly outlined.


Assuntos
Polímeros/química , Simulação por Computador , Ciclização , Difusão , Cinética , Solventes , Fatores de Tempo
7.
Biophys J ; 89(1): 80-6, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15849251

RESUMO

We investigate the stretching response of a thick polymer model by means of extensive stochastic simulations. The computational results are synthesized in an analytic expression that characterizes how the force versus elongation curve depends on the polymer structural parameters: its thickness and granularity (spacing of the monomers). The expression is used to analyze experimental data for the stretching of various different types of biopolymers: polypeptides, polysaccharides, and nucleic acids. Besides recovering elastic parameters (such as the persistence length) that are consistent with those obtained from standard entropic models, the approach allows us to extract viable estimates for the polymers diameter and granularity. This shows that the basic structural polymer features have such a profound impact on the elastic behavior that they can be recovered with the sole input of stretching measurements.


Assuntos
Materiais Biocompatíveis/química , Polímeros/química , Biopolímeros/química , Celulose/química , DNA/química , Eletrólitos/química , Entropia , Íons , Substâncias Macromoleculares , Modelos Teóricos , Método de Monte Carlo , Polissacarídeos , Estrutura Terciária de Proteína , Processos Estocásticos , Estresse Mecânico , Resistência à Tração , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...