Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 125(32): 6893-6901, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34353026

RESUMO

Phenalenyl is a triangular aromatic molecule made of three fused benzene rings, carrying an unpaired electron, and many of its derivatives show crystal structures with stacked radicals. Here, we investigate the inter-molecular binding in phenalenyl dimers by state-of-the-art computational methods and phenomenological models. Aside from being important for the supramolecular assembly of such radical molecules, the theoretical insight is relevant in methodological aspects, due to the interplay of long-range exchange coupling effects and van der Waals forces. We used comparative wave function-based and density functional theories. Drawing the potential energy surfaces as a function of inter-planar separation and mutual rotation of the monomer units, we found an interesting pattern which is not discovered in previous computational reports on the title systems. The dependence can be nicely interpreted by a transparent phenomenological model based on an orbital overlap paradigm of exchange coupling. We also brought forth a simplified phenomenological valence bond (VB) model of inter-molecular coupling, which is realized on the background of the VB spin model inside of the aromatic monomers and calibrated with the corresponding ab initio data. As the systems can be considered good candidates with potential applications in spintronics and organic magnetism, the theoretical rationalization opens up prospective ways to realize such promises.

2.
Langmuir ; 25(11): 6522-31, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19374442

RESUMO

Second harmonic generation (SHG) investigations on alpha-CN-terthiophene-thiolate-covered GaAs(110) electrodes in 1 N H2SO4 solution revealed significant changes in the rotational anisotropy of the SH response. The enhancement of the 1- and the 3-fold contributions around -250 mV suggests changes in the symmetry properties of the delocalized electron system due to an alteration of the adsorption geometry induced by the applied potentials. The analysis of the EIS data showed that in the potential region where the SH signal exhibits the more important changes the Mott-Schottky plot undergoes a pronounced shift to more negative potentials as a result of the charging of the surface states grouped about 1.06 eV below the conduction band edge. Semiempirical MO calculations suggest that the most energetically favorable interaction implies electron transfer from the semiconductor conduction band to the lowest unoccupied molecular orbital of the organic molecule with epsilon(LUMO)=-1.707 eV. Such a chemisorption bond bringing the organic molecule to a quasi-planar position is well supported by the major changes in the XPS spectra of the electrochemically biased samples with respect to the as-prepared ones. Two distinct N 1s species instead of one and a shift of 1.6 eV to higher BE of the terthiophene S 2s core level are strong evidence for a potential-induced change in the adsorption geometry. Taking into account that the acceptor-like surface state group located close to the semiconductor valence edge (EC,S=-1.06 eV) may correspond to the LUMO level (shifted downward by the adsorption process), we assume that the organic molecule, initially adsorbed by the thiolate end, undergoes a conformational change from a tilted to an almost flat position when the applied potential brings the semiconductor Fermi level into its neighborhood. This assumption is in a very good agreement with the potential-induced variation in the thiol thickness estimated from the thiol capacitance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...