Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 8(1): 24, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23311434

RESUMO

We report on and emphasize the versatility of conductive atomic force microscopy in characterizing vertically aligned carbon nanotubes (CNTs) aimed to be used in via interconnect technology. The study is conducted on multi-walled CNT arrays vertically grown on a copper-based metal line. Voltage-dependent current mapping and current-voltage characteristics recorded down to single CNT allow for a comprehensive insight into the electric behaviour of the hybrid structure.

2.
Nanoscale Res Lett ; 7(1): 682, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23259903

RESUMO

During the recent years, a significant amount of research has been performed on single-walled carbon nanotubes (SWCNTs) as a channel material in thin-film transistors (Pham et al. IEEE Trans Nanotechnol 11:44-50, 2012). This has prompted the application of advanced characterization techniques based on combined atomic force microscopy (AFM) and Raman spectroscopy studies (Mureau et al. Electrophoresis 29:2266-2271, 2008). In this context, we use confocal Raman microscopy and current sensing atomic force microscopy (CS-AFM) to study phonons and the electronic transport in semiconducting SWCNTs, which were aligned between palladium electrodes using dielectrophoresis (Kuzyk Electrophoresis 32:2307-2313, 2011). Raman imaging was performed in the region around the electrodes on the suspended CNTs using several laser excitation wavelengths. Analysis of the G+/G- splitting in the Raman spectra (Sgobba and Guldi Chem Soc Rev 38:165-184, 2009) shows CNT diameters of 2.5 ± 0.3 nm. Neither surface modification nor increase in defect density or stress at the CNT-electrode contact could be detected, but rather a shift in G+ and G- peak positions in regions with high CNT density between the electrodes. Simultaneous topographical and electrical characterization of the CNT transistor by CS-AFM confirms the presence of CNT bundles having a stable electrical contact with the transistor electrodes. For a similar load force, reproducible current-voltage (I/V) curves for the same CNT regions verify the stability of the electrical contact between the nanotube and the electrodes as well as the nanotube and the AFM tip over different experimental sessions using different AFM tips. Strong variations observed in the I/V response at different regions of the CNT transistor are discussed.

3.
Langmuir ; 28(37): 13325-30, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22931485

RESUMO

The organic/metal interface formed upon adsorption of cobalt(II) phthalocyanine (CoPc) molecules on a flat Ag(111) single crystal was investigated using a combination of scanning tunneling microscopy (STM) and photoemission spectroscopy (PES). A flat-lying molecular adsorption with the π conjugated phthalocyanine ligand parallel to the substrate was found to lead to an effective molecule-substrate coupling which governs a template-guided molecular growth. A voltage polarity dependence at the cobalt ion site was emphasized and correlated with the Co 2p core level spectra evolution which sustains an interface-confined reduction effect of the cobalt oxidation state. The formation of interface dipoles was observed via monitoring the changes in the work function (WF) upon deposition. The observations are discussed on the basis of a site-dependent donation/backdonation charge transfer at the molecule-substrate interface.

4.
J Am Chem Soc ; 133(14): 5538-44, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21417330

RESUMO

The adsorption of lutetium(III) bis-phthalocyanine (LuPc(2)) on Ag(111) was investigated using scanning tunneling microscopy and spectroscopy (STM/STS). A comprehensive study was carried out toward understanding the driving mechanism responsible for the formation of the first and second monolayers (MLs). In both MLs, the adsorbed molecules are found to exhibit different in-plane orientations arranged according to a "chess-board" like pattern. Highly resolved STM images allowed an exact determination of the corresponding angle mismatch, which differs for the first and second MLs. The tunneling transport through individual molecules reveals a negative differential resistance (NDR) effect detectable within the current-voltage curves. The corresponding density of states (DOS) representation is consistent with a resonant tunneling mechanism sustained by the valence band (VB) states close to the Fermi energy (E(F)) recorded via highly resolved ultraviolet photoemission spectroscopy (UPS).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...