Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 20086, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833023

RESUMO

Streptomyces thermoautotrophicus UBT1 has been described as a moderately thermophilic chemolithoautotroph with a novel nitrogenase enzyme that is oxygen-insensitive. We have cultured the UBT1 strain, and have isolated two new strains (H1 and P1-2) of very similar phenotypic and genetic characters. These strains show minimal growth on ammonium-free media, and fail to incorporate isotopically labeled N2 gas into biomass in multiple independent assays. The sdn genes previously published as the putative nitrogenase of S. thermoautotrophicus have little similarity to anything found in draft genome sequences, published here, for strains H1 and UBT1, but share >99% nucleotide identity with genes from Hydrogenibacillus schlegelii, a draft genome for which is also presented here. H. schlegelii similarly lacks nitrogenase genes and is a non-diazotroph. We propose reclassification of the species containing strains UBT1, H1, and P1-2 as a non-Streptomycete, non-diazotrophic, facultative chemolithoautotroph and conclude that the existence of the previously proposed oxygen-tolerant nitrogenase is extremely unlikely.


Assuntos
Genes Bacterianos , Fixação de Nitrogênio , Streptomyces/genética , Streptomyces/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Marcação por Isótopo , Nitrogênio/metabolismo , Nitrogenase/genética , Nitrogenase/metabolismo , Homologia de Sequência do Ácido Nucleico
2.
Methods Mol Biol ; 1370: 147-67, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26659961

RESUMO

Cells in the Arabidopsis shoot apical meristem are small and divide frequently throughout the life-time of the organism making them good candidates for studying the mechanisms of cell division in plants. But tracking these cell divisions requires multiple images to be taken of the same specimen over time which means the specimen must stay alive throughout the process. This chapter provides details on how to prepare plants for live imaging, keep them alive and growing through multiple time points, and how to process the data to extract cell boundary coordinates from three-dimensional images.


Assuntos
Arabidopsis/citologia , Divisão Celular , Imageamento Tridimensional/métodos , Meristema/citologia , Microscopia Confocal/métodos , Brotos de Planta/citologia , Arabidopsis/crescimento & desenvolvimento , Técnicas de Cultura de Células/métodos , Meristema/crescimento & desenvolvimento , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Brotos de Planta/crescimento & desenvolvimento , Software
3.
Proc Natl Acad Sci U S A ; 112(15): 4815-20, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825722

RESUMO

The stereotypic pattern of cell shapes in the Arabidopsis shoot apical meristem (SAM) suggests that strict rules govern the placement of new walls during cell division. When a cell in the SAM divides, a new wall is built that connects existing walls and divides the cytoplasm of the daughter cells. Because features that are determined by the placement of new walls such as cell size, shape, and number of neighbors are highly regular, rules must exist for maintaining such order. Here we present a quantitative model of these rules that incorporates different observed features of cell division. Each feature is incorporated into a "potential function" that contributes a single term to a total analog of potential energy. New cell walls are predicted to occur at locations where the potential function is minimized. Quantitative terms that represent the well-known historical rules of plant cell division, such as those given by Hofmeister, Errera, and Sachs are developed and evaluated against observed cell divisions in the epidermal layer (L1) of Arabidopsis thaliana SAM. The method is general enough to allow additional terms for nongeometric properties such as internal concentration gradients and mechanical tensile forces.


Assuntos
Arabidopsis/citologia , Meristema/citologia , Modelos Biológicos , Brotos de Planta/citologia , Algoritmos , Arabidopsis/metabolismo , Divisão Celular , Linhagem da Célula , Tamanho Celular , Parede Celular/metabolismo , Simulação por Computador , Meristema/metabolismo , Microscopia Confocal , Brotos de Planta/metabolismo , Imagem com Lapso de Tempo
4.
Nat Rev Mol Cell Biol ; 12(4): 265-73, 2011 04.
Artigo em Inglês | MEDLINE | ID: mdl-21364682

RESUMO

The emerging field of computational morphodynamics aims to understand the changes that occur in space and time during development by combining three technical strategies: live imaging to observe development as it happens; image processing and analysis to extract quantitative information; and computational modelling to express and test time-dependent hypotheses. The strength of the field comes from the iterative and combined use of these techniques, which has provided important insights into plant development.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Desenvolvimento Vegetal , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Cinética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Plantas/genética , Plantas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo
5.
Annu Rev Plant Biol ; 61: 65-87, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20192756

RESUMO

Computational morphodynamics utilizes computer modeling to understand the development of living organisms over space and time. Results from biological experiments are used to construct accurate and predictive models of growth. These models are then used to make novel predictions that provide further insight into the processes involved, which can be tested experimentally to either confirm or rule out the validity of the computational models. This review highlights two fundamental challenges: (a) to understand the feedback between mechanics of growth and chemical or molecular signaling, and (b) to design models that span and integrate single cell behavior with tissue development. We review different approaches to model plant growth and discuss a variety of model types that can be implemented to demonstrate how the interplay between computational modeling and experimentation can be used to explore the morphodynamics of plant development.


Assuntos
Modelos Biológicos , Desenvolvimento Vegetal , Retroalimentação , Microscopia Confocal , Plantas/anatomia & histologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...