Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 56(8): 4423-4435, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28362087

RESUMO

Respiratory nitrate reductases (Nars), members of the prokaryotic Mo/W-bis Pyranopterin Guanosine dinucleotide (Mo/W-bisPGD) enzyme superfamily, are key players in nitrate respiration, a major bioenergetic pathway widely used by microorganisms to cope with the absence of dioxygen. The two-electron reduction of nitrate to nitrite takes place at their active site, where the molybdenum ion cycles between Mo(VI) and Mo(IV) states via a Mo(V) intermediate. The active site shows two distinct pH-dependent Mo(V) electron paramagnetic resonance (EPR) signals whose structure and catalytic relevance have long been debated. In this study, we use EPR and HYSCORE techniques to probe their nuclear environment in Escherichia coli Nar (EcNar). By using samples prepared at different pH and through different enrichment strategies in 98Mo and 15N nuclei, we demonstrate that each of the two Mo(V) species is coupled to a single nitrogen nucleus with similar quadrupole characteristics. Structure-based density functional theory calculations allow us to propose a molecular model of the low-pH Mo(V) species consistent with EPR spectroscopic data. Our results show that the metal ion is coordinated by a monodentate aspartate ligand and permit the assignment of the coupled nitrogen nuclei to the Nδ of Asn52, a residue located ∼3.9 Å to the Mo atom in the crystal structures. This is confirmed by measurements on selectively 15N-Asn labeled EcNar. Further, we propose a Mo-O(H)···HN structure to account for the transfer of spin density onto the interacting nitrogen nucleus deduced from HYSCORE analysis. This work provides a foundation for monitoring the structure of the molybdenum active site in the presence of various substrates or inhibitors in Nars and other molybdenum enzymes.


Assuntos
Molibdênio/química , Nitrato Redutases/química , Compostos Organometálicos/química , Teoria Quântica , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Molibdênio/metabolismo , Nitrato Redutases/metabolismo , Compostos Organometálicos/metabolismo
2.
Biochim Biophys Acta ; 1847(10): 1055-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26073890

RESUMO

Over the past decades, a number of authors have reported the presence of inactive species in as-prepared samples of members of the Mo/W-bisPGD enzyme family. This greatly complicated the spectroscopic studies of these enzymes, since it is impossible to discriminate between active and inactive species on the basis of the spectroscopic signatures alone. Escherichia coli nitrate reductase A (NarGHI) is a member of the Mo/W-bisPGD family that allows anaerobic respiration using nitrate as terminal electron acceptor. Here, using protein film voltammetry on NarGH films, we show that the enzyme is purified in a functionally heterogeneous form that contains between 20 and 40% of inactive species that activate the first time they are reduced. This activation proceeds in two steps: a non-redox reversible reaction followed by an irreversible reduction. By carefully correlating electrochemical and EPR spectroscopic data, we show that neither the two major Mo(V) signals nor those of the two FeS clusters that are the closest to the Mo center are associated with the two inactive species. We also conclusively exclude the possibility that the major "low-pH" and "high-pH" Mo(V) EPR signatures correspond to species in acid-base equilibrium.

3.
Elife ; 42015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26077726

RESUMO

Respiration, an essential process for most organisms, has to optimally respond to changes in the metabolic demand or the environmental conditions. The branched character of their respiratory chains allows bacteria to do so by providing a great metabolic and regulatory flexibility. Here, we show that the native localization of the nitrate reductase, a major respiratory complex under anaerobiosis in Escherichia coli, is submitted to tight spatiotemporal regulation in response to metabolic conditions via a mechanism using the transmembrane proton gradient as a cue for polar localization. These dynamics are critical for controlling the activity of nitrate reductase, as the formation of polar assemblies potentiates the electron flux through the complex. Thus, dynamic subcellular localization emerges as a critical factor in the control of respiration in bacteria.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Espaço Intracelular/metabolismo , Complexos Multienzimáticos/metabolismo , Nitrato Redutase/metabolismo , Consumo de Oxigênio/fisiologia , Fracionamento Celular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Engenharia Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Nitrato Redutase/genética , Plasmídeos/genética , Subunidades Proteicas/metabolismo , Estatísticas não Paramétricas
4.
Nat Commun ; 6: 6148, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25649206

RESUMO

Formate dehydrogenases (FDHs) are of interest as they are natural catalysts that sequester atmospheric CO2, generating reduced carbon compounds with possible uses as fuel. FDHs activity in Escherichia coli strictly requires the sulphurtransferase EcFdhD, which likely transfers sulphur from IscS to the molybdenum cofactor (Mo-bisPGD) of FDHs. Here we show that EcFdhD binds Mo-bisPGD in vivo and has submicromolar affinity for GDP-used as a surrogate of the molybdenum cofactor's nucleotide moieties. The crystal structure of EcFdhD in complex with GDP shows two symmetrical binding sites located on the same face of the dimer. These binding sites are connected via a tunnel-like cavity to the opposite face of the dimer where two dynamic loops, each harbouring two functionally important cysteine residues, are present. On the basis of structure-guided mutagenesis, we propose a model for the sulphuration mechanism of Mo-bisPGD where the sulphur atom shuttles across the chaperone dimer.


Assuntos
Coenzimas/química , Escherichia coli/metabolismo , Formiato Desidrogenases/química , Guanosina Difosfato/química , Hidrogenase/química , Chaperonas Moleculares/química , Molibdênio/química , Complexos Multienzimáticos/química , Sítios de Ligação , Biocatálise , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Liases de Carbono-Enxofre/metabolismo , Clonagem Molecular , Coenzimas/metabolismo , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/genética , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Formiatos/química , Formiatos/metabolismo , Expressão Gênica , Guanosina Difosfato/metabolismo , Hidrogenase/genética , Hidrogenase/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Molibdênio/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Oxirredução , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Enxofre/química , Enxofre/metabolismo
5.
J Biol Chem ; 287(7): 4671-8, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22194618

RESUMO

l-Cysteine desulfurases provide sulfur to several metabolic pathways in the form of persulfides on specific cysteine residues of an acceptor protein for the eventual incorporation of sulfur into an end product. IscS is one of the three Escherichia coli l-cysteine desulfurases. It interacts with FdhD, a protein essential for the activity of formate dehydrogenases (FDHs), which are iron/molybdenum/selenium-containing enzymes. Here, we address the role played by this interaction in the activity of FDH-H (FdhF) in E. coli. The interaction of IscS with FdhD results in a sulfur transfer between IscS and FdhD in the form of persulfides. Substitution of the strictly conserved residue Cys-121 of FdhD impairs both sulfur transfer from IscS to FdhD and FdhF activity. Furthermore, inactive FdhF produced in the absence of FdhD contains both metal centers, albeit the molybdenum cofactor is at a reduced level. Finally, FdhF activity is sulfur-dependent, as it shows reversible sensitivity to cyanide treatment. Conclusively, FdhD is a sulfurtransferase between IscS and FdhF and is thereby essential to yield FDH activity.


Assuntos
Liases de Carbono-Enxofre/química , Escherichia coli/enzimologia , Formiato Desidrogenases/química , Liases de Carbono-Enxofre/metabolismo , Coenzimas/química , Coenzimas/metabolismo , Formiato Desidrogenases/metabolismo , Ferro/química , Ferro/metabolismo , Molibdênio/química , Molibdênio/metabolismo , Selênio/química , Selênio/metabolismo , Enxofre/química , Enxofre/metabolismo
6.
FEBS J ; 277(8): 1886-95, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20236317

RESUMO

A novel class of molecular chaperones co-ordinates the assembly and targeting of complex metalloproteins by binding to an amino-terminal peptide of the cognate substrate. We have previously shown that the NarJ chaperone interacts with the N-terminus of the NarG subunit coming from the nitrate reductase complex, NarGHI. In the present study, NMR structural analysis revealed that the NarG(1-15) peptide adopts an alpha-helical conformation in solution. Moreover, NarJ recognizes and binds the helical NarG(1-15) peptide mostly via hydrophobic interactions as deduced from isothermal titration calorimetry analysis. NMR and differential scanning calorimetry analysis revealed a modification of NarJ conformation during complex formation with the NarG(1-15) peptide. Isothermal titration calorimetry and BIAcore experiments support a model whereby the protonated state of the chaperone controls the time dependence of peptide interaction.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Nitrato Redutase/química , Nitrato Redutase/metabolismo , Sítios de Ligação/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Nitrato Redutase/genética , Ligação Proteica/genética , Conformação Proteica , Estrutura Secundária de Proteína , Eletricidade Estática , Termodinâmica
7.
J Biol Chem ; 281(4): 2170-6, 2006 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-16286471

RESUMO

Understanding when and how metal cofactor insertion occurs into a multisubunit metalloenzyme is of fundamental importance. Molybdenum cofactor insertion is a tightly controlled process that involves specific interactions between the proteins that promote cofactor delivery, enzyme-specific chaperones, and the apoenzyme. In the assembly pathway of the multisubunit molybdoenzyme, membrane-bound nitrate reductase A from Escherichia coli, a NarJ-assisted molybdenum cofactor (Moco) insertion step, must precede membrane anchoring of the apoenzyme. Here, we have shown that the NarJ chaperone interacts at two distinct binding sites of the apoenzyme, one interfering with its membrane anchoring and another one being involved in molybdenum cofactor insertion. The presence of the two NarJ-binding sites within NarG is required to ensure productive formation of active nitrate reductase. Our findings supported the view that enzyme-specific chaperones play a central role in the biogenesis of multisubunit molybdoenzymes by coordinating subunits assembly and molybdenum cofactor insertion.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Chaperonas Moleculares/química , Molibdênio/química , Nitrato Redutase/química , Nitratos/química , Sítios de Ligação , Técnicas Biossensoriais , Escherichia coli/metabolismo , Deleção de Genes , Modelos Biológicos , Modelos Moleculares , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Frações Subcelulares , Thermus/enzimologia , Técnicas do Sistema de Duplo-Híbrido
8.
Biochim Biophys Acta ; 1600(1-2): 105-10, 2002 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-12445465

RESUMO

Calmodulin is the most ubiquitous calcium binding protein. The protein is very sensitive to oxidation and this modification has pronounced effects on calmodulin function. In this work, we decided to fully oxidise calmodulin in order to study the consequences on cation binding, domain stability, and alpha helicity. Oxidation of methionines unfolds completely the apostate of the protein, which upon calcium binding recovers the major part of its secondary and tertiary structure. However, the unstructuring of the apostate results in a protein that binds calcium to any site in an independent manner, does not bind magnesium and does not possess auxiliary sites anymore.


Assuntos
Cálcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Sequência de Aminoácidos , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Calorimetria , Temperatura Alta , Magnésio/metabolismo , Metionina/química , Modelos Moleculares , Oxirredução , Ligação Proteica , Desnaturação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...