Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37050747

RESUMO

Routine blood pressure measurement is important for the early detection of various diseases. Recently, cuffless blood pressure estimation methods that do not require cuff pressurization have attracted attention. In this study, we investigated the effect of the light source wavelength on the accuracy of blood pressure estimation using only two physiological indices that can be calculated with photoplethysmography alone, namely, heart rate and modified normalized pulse volume. Using a newly developed photoplethysmography sensor that can simultaneously measure photoplethysmograms at four wavelengths, we evaluated its estimation accuracy for systolic blood pressure, diastolic blood pressure, and mean arterial pressure against a standard cuff sphygmomanometer. Mental stress tasks were used to alter the blood pressure of 14 participants, and multiple linear regression analysis showed the best light sources to be near-infrared for systolic blood pressure and blue for both diastolic blood pressure and mean arterial pressure. The importance of the light source wavelength for the photoplethysmogram in cuffless blood pressure estimation was clarified.


Assuntos
Determinação da Pressão Arterial , Fotopletismografia , Humanos , Pressão Sanguínea/fisiologia , Fotopletismografia/métodos , Determinação da Pressão Arterial/métodos , Esfigmomanômetros , Frequência Cardíaca/fisiologia , Análise de Onda de Pulso/métodos
2.
Sci Rep ; 8(1): 7298, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740088

RESUMO

Cuffless blood pressure (BP) measurement is an all-inclusive term for a method that aims to measure BP without using a cuff. Recent cuffless technology has made it possible to estimate BP with reasonable accuracy. However, mainstream methods require an electrocardiogram and photoplethysmogram measurements, and frequent calibration procedures using a cuff sphygmomanometer. We therefore developed a far simpler cuffless method, using only heart rate (HR) and modified normalized pulse volume (mNPV) that can be measured using a smartphone, based on the knowledge that ln BP = ln cardiac output (CO) + ln total peripheral resistance (TPR), where CO and TPR are correlated with HR and mNPV, respectively. Here, we show that mean arterial pressure (MAP), systolic BP (SBP), and diastolic BP (DBP) could be estimated using the exponential transformation of linear polynomial equation, (a × ln HR) + (b × ln mNPV) + constant, using only a smartphone, with an accuracy of R > 0.70. This implies that our cuffless method could convert a large number of smartphones or smart watches into simplified sphygmomanometers.


Assuntos
Determinação da Pressão Arterial/métodos , Pressão Sanguínea/fisiologia , Smartphone , Esfigmomanômetros/tendências , Eletrocardiografia , Frequência Cardíaca/fisiologia , Humanos , Fotopletismografia , Análise de Onda de Pulso
3.
Biomed Opt Express ; 9(4): 1570-1581, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29675302

RESUMO

For transillumination imaging of animal tissues, we have attempted to suppress the scattering effect in a turbid medium using the time-reversal principle of phase-conjugate light. We constructed a digital phase-conjugate system to enable intensity modulation and phase modulation. Using this system, we clarified the effectiveness of the intensity information for restoration of the original light distribution through a turbid medium. By varying the scattering coefficient of the medium, we clarified the limit of time-reversal ability with intensity information of the phase-conjugate light. Experiment results demonstrated the applicability of the proposed technique to animal tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...