Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Arch Dis Child ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38925883

RESUMO

OBJECTIVE: Type 1 diabetes (T1D) screening programmes testing islet autoantibodies (IAbs) in childhood can reduce life-threatening diabetic ketoacidosis. General population screening is required to detect the majority of children with T1D, since in >85% there is no family history. Age 3-5 years has been proposed as an optimal age for a single screen approach. DESIGN: Capillary samples were collected from children attending their preschool vaccination and analysed for IAbs to insulin, glutamic acid decarboxylase, islet antigen-2 and zinc transporter 8 using radiobinding/luciferase immunoprecipitation system assays. Acceptability was assessed using semistructured interviews and open-ended postcard questionnaires with parents. SETTING: Two primary care practices in Oxfordshire, UK. MAIN OUTCOME MEASURES: The ability to collect capillary blood to test IAbs in children at the routine preschool vaccination (3.5-4 years). RESULTS: Of 134 parents invited, 66 (49%) were recruited (median age 3.5 years (IQR 3.4-3.6), 26 (39.4%) male); 63 provided a sample (97% successfully), and one participant was identified with a single positive IAb. Parents (n=15 interviews, n=29 postcards) were uniformly positive about screening aligned to vaccination and stated they would have been less likely to take part had screening been a separate visit. Themes identified included preparedness for T1D and the long-term benefit outweighing short-term upset. The perceived volume of the capillary sample was a potential concern and needs optimising. CONCLUSIONS: Capillary IAb testing is a possible method to screen children for T1D. Aligning collection to the preschool vaccination visit can be convenient for families without the need for an additional visit.

2.
Acta Neuropathol ; 147(1): 87, 2024 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761203

RESUMO

Antibodies are essential research tools whose performance directly impacts research conclusions and reproducibility. Owing to its central role in Alzheimer's disease and other dementias, hundreds of distinct antibody clones have been developed against the microtubule-associated protein Tau and its multiple proteoforms. Despite this breadth of offer, limited understanding of their performance and poor antibody selectivity have hindered research progress. Here, we validate a large panel of Tau antibodies by Western blot (79 reagents) and immunohistochemistry (35 reagents). We address the reagents' ability to detect the target proteoform, selectivity, the impact of protein phosphorylation on antibody binding and performance in human brain samples. While most antibodies detected Tau at high levels, many failed to detect it at lower, endogenous levels. By WB, non-selective binding to other proteins affected over half of the antibodies tested, with several cross-reacting with the related MAP2 protein, whereas the "oligomeric Tau" T22 antibody reacted with monomeric Tau by WB, thus calling into question its specificity to Tau oligomers. Despite the presumption that "total" Tau antibodies are agnostic to post-translational modifications, we found that phosphorylation partially inhibits binding for many such antibodies, including the popular Tau-5 clone. We further combine high-sensitivity reagents, mass-spectrometry proteomics and cDNA sequencing to demonstrate that presumptive Tau "knockout" human cells continue to express residual protein arising through exon skipping, providing evidence of previously unappreciated gene plasticity. Finally, probing of human brain samples with a large panel of antibodies revealed the presence of C-term-truncated versions of all main Tau brain isoforms in both control and tauopathy donors. Ultimately, we identify a validated panel of Tau antibodies that can be employed in Western blotting and/or immunohistochemistry to reliably detect even low levels of Tau expression with high selectivity. This work represents an extensive resource that will enable the re-interpretation of published data, improve reproducibility in Tau research, and overall accelerate scientific progress.


Assuntos
Anticorpos , Western Blotting , Encéfalo , Imuno-Histoquímica , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/imunologia , Humanos , Imuno-Histoquímica/métodos , Anticorpos/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Fosforilação , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/imunologia , Reprodutibilidade dos Testes
3.
Diabetologia ; 67(6): 995-1008, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38517484

RESUMO

AIMS/HYPOTHESIS: Type 1 diabetes is an heterogenous condition. Characterising factors explaining differences in an individual's clinical course and treatment response will have important clinical and research implications. Our aim was to explore type 1 diabetes heterogeneity, as assessed by clinical characteristics, autoantibodies, beta cell function and glycaemic outcomes, during the first 12 months from diagnosis, and how it relates to age at diagnosis. METHODS: Data were collected from the large INNODIA cohort of individuals (aged 1.0-45.0 years) newly diagnosed with type 1 diabetes, followed 3 monthly, to assess clinical characteristics, C-peptide, HbA1c and diabetes-associated antibodies, and their changes, during the first 12 months from diagnosis, across three age groups: <10 years; 10-17 years; and ≥18 years. RESULTS: The study population included 649 individuals (57.3% male; age 12.1±8.3 years), 96.9% of whom were positive for one or more diabetes-related antibodies. Baseline (IQR) fasting C-peptide was 242.0 (139.0-382.0) pmol/l (AUC 749.3 [466.2-1106.1] pmol/l × min), with levels increasing with age (p<0.001). Over time, C-peptide remained lower in participants aged <10 years but it declined in all age groups. In parallel, glucose levels progressively increased. Lower baseline fasting C-peptide, BMI SD score and presence of diabetic ketoacidosis at diagnosis were associated with lower stimulated C-peptide over time. HbA1c decreased during the first 3 months (p<0.001), whereas insulin requirement increased from 3 months post diagnosis (p<0.001). CONCLUSIONS/INTERPRETATION: In this large cohort with newly diagnosed type 1 diabetes, we identified age-related differences in clinical and biochemical variables. Of note, C-peptide was lower in younger children but there were no main age differences in its rate of decline.


Assuntos
Autoanticorpos , Peptídeo C , Diabetes Mellitus Tipo 1 , Hemoglobinas Glicadas , Humanos , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/epidemiologia , Adolescente , Criança , Masculino , Feminino , Peptídeo C/sangue , Adulto , Adulto Jovem , Pré-Escolar , Autoanticorpos/sangue , Hemoglobinas Glicadas/metabolismo , Glicemia/metabolismo , Estudos de Coortes , Lactente , Europa (Continente)/epidemiologia , Pessoa de Meia-Idade , Células Secretoras de Insulina/metabolismo
4.
Mol Psychiatry ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361127

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative condition and the most common type of dementia, characterised by pathological accumulation of extracellular plaques and intracellular neurofibrillary tangles that mainly consist of amyloid-ß (Aß) and hyperphosphorylated tau aggregates, respectively. Previous studies in mouse models with a targeted knock-out of the microtubule-associated protein tau (Mapt) gene demonstrated that Aß-driven toxicity is tau-dependent. However, human cellular models with chronic tau lowering remain unexplored. In this study, we generated stable tau-depleted human induced pluripotent stem cell (iPSC) isogenic panels from two healthy individuals using CRISPR-Cas9 technology. We then differentiated these iPSCs into cortical neurons in vitro in co-culture with primary rat cortical astrocytes before conducting electrophysiological and imaging experiments for a wide range of disease-relevant phenotypes. Both AD brain derived and recombinant Aß were used in this study to elicit toxic responses from the iPSC-derived cortical neurons. We showed that tau depletion in human iPSC-derived cortical neurons caused considerable reductions in neuronal activity without affecting synaptic density. We also observed neurite outgrowth impairments in two of the tau-depleted lines used. Finally, tau depletion protected neurons from adverse effects by mitigating the impact of exogenous Aß-induced hyperactivity, deficits in retrograde axonal transport of mitochondria, and neurodegeneration. Our study established stable human iPSC isogenic panels with chronic tau depletion from two healthy individuals. Cortical neurons derived from these iPSC lines showed that tau is essential in Aß-driven hyperactivity, axonal transport deficits, and neurodegeneration, consistent with studies conducted in Mapt-/- mouse models. These findings highlight the protective effects of chronic tau lowering strategies in AD pathogenesis and reinforce the potential in clinical settings. The tau-depleted human iPSC models can now be applied at scale to investigate the involvement of tau in disease-relevant pathways and cell types.

5.
Diabetologia ; 67(4): 670-678, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38214711

RESUMO

AIMS/HYPOTHESIS: The aim of this study was to determine whether BMI in early childhood was affected by the COVID-19 pandemic and containment measures, and whether it was associated with the risk for islet autoimmunity. METHODS: Between February 2018 and May 2023, data on BMI and islet autoimmunity were collected from 1050 children enrolled in the Primary Oral Insulin Trial, aged from 4.0 months to 5.5 years of age. The start of the COVID-19 pandemic was defined as 18 March 2020, and a stringency index was used to assess the stringency of containment measures. Islet autoimmunity was defined as either the development of persistent confirmed multiple islet autoantibodies, or the development of one or more islet autoantibodies and type 1 diabetes. Multivariate linear mixed-effect, linear and logistic regression methods were applied to assess the effect of the COVID-19 pandemic and the stringency index on early-childhood BMI measurements (BMI as a time-varying variable, BMI at 9 months of age and overweight risk at 9 months of age), and Cox proportional hazard models were used to assess the effect of BMI measurements on islet autoimmunity risk. RESULTS: The COVID-19 pandemic was associated with increased time-varying BMI (ß = 0.39; 95% CI 0.30, 0.47) and overweight risk at 9 months (ß = 0.44; 95% CI 0.03, 0.84). During the COVID-19 pandemic, a higher stringency index was positively associated with time-varying BMI (ß = 0.02; 95% CI 0.00, 0.04 per 10 units increase), BMI at 9 months (ß = 0.13; 95% CI 0.01, 0.25) and overweight risk at 9 months (ß = 0.23; 95% CI 0.03, 0.43). A higher age-corrected BMI and overweight risk at 9 months were associated with increased risk for developing islet autoimmunity up to 5.5 years of age (HR 1.16; 95% CI 1.01, 1.32 and HR 1.68, 95% CI 1.00, 2.82, respectively). CONCLUSIONS/INTERPRETATION: Early-childhood BMI increased during the COVID-19 pandemic, and was influenced by the level of restrictions during the pandemic. Controlling for the COVID-19 pandemic, elevated BMI during early childhood was associated with increased risk for childhood islet autoimmunity in children with genetic susceptibility to type 1 diabetes.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Pré-Escolar , Autoimunidade/genética , Índice de Massa Corporal , Pandemias , Sobrepeso/complicações , COVID-19/epidemiologia , COVID-19/complicações , Autoanticorpos
6.
BMJ Paediatr Open ; 8(1)2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216311

RESUMO

BACKGROUND: Vitamin D insufficiency (VDI) may be a factor in the development of type 1 diabetes (T1D). The aim of this study is to investigate the presence and persistence of VDI in a large cohort of infants with increased risk of developing T1D, in light of the differences in local supplementation guidelines. METHODS: In the POInT Study, a multicentre primary prevention study between February 2018 and March 2021 in Germany, Poland, Belgium, England and Sweden, including infants aged 4-7 months at high genetic risk of developing ß-cell autoantibodies, vitamin D levels were analysed at each study visit from inclusion (4-7 months) until 3 years, with an interval of 2 months (first three visits) or 4-6 months (visits 4-8). The protocol actively promotes vitamin D sufficiency to optimise immune tolerance. VDI was defined as a concentration below 30 ng/mL and was treated according to local guidelines of participating centres. Recovery from VDI was defined as a concentration above or equal to 30 ng/mL on the subsequent visit after VDI. RESULTS: 1050 infants were included, of which 5937 vitamin D levels were available for analyses. VDI was observed in 1464 (24.7%) visits and 507 (46.1%) of these were not resolved at the next visit. The risk of having VDI was independently associated with season (higher in winter), weight (higher with increased weight), age (higher with increased age) and country (higher in England). The risk of not recovering from VDI was independently associated with the season of the previously determined VDI, which was higher if VDI was identified in winter. CONCLUSIONS: VDI is frequent in infants with increased risk of developing T1D. Treatment guidelines for VDI do not seem effective. Increasing supplementation dosages in this patient population seems warranted, especially during winter, and increasing dosages more aggressively after VDI should be considered.


Assuntos
Diabetes Mellitus Tipo 1 , Deficiência de Vitamina D , Lactente , Humanos , Vitamina D/uso terapêutico , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/complicações , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/epidemiologia , Vitaminas , Fatores de Risco
7.
Diabetes Care ; 47(2): 239-245, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38087932

RESUMO

OBJECTIVE: C-peptide and islet autoantibodies are key type 1 diabetes biomarkers, typically requiring venous sampling, which limits their utility. We assessed transdermal capillary blood (TCB) collection as a practical alternative. RESEARCH DESIGN AND METHODS: Ninety-one individuals (71 with type 1 diabetes, 20 control; individuals with type 1 diabetes: aged median 14.8 years [interquartile range (IQR) 9.1-17.1], diabetes duration 4.0 years [1.5-7.7]; control individuals: 42.2 years [38.0-52.1]) underwent contemporaneous venous and TCB sampling for measurement of plasma C-peptide. Participants with type 1 diabetes also provided venous serum and plasma, and TCB plasma for measurement of autoantibodies to glutamate decarboxylase, islet antigen-2, and zinc transporter 8. The ability of TCB plasma to detect significant endogenous insulin secretion (venous C-peptide ≥200 pmol/L) was compared along with agreement in levels, using Bland-Altman. Venous serum was compared with venous and TCB plasma for detection of autoantibodies, using established thresholds. Acceptability was assessed by age-appropriate questionnaire. RESULTS: Transdermal sampling took a mean of 2.35 min (SD 1.49). Median sample volume was 50 µL (IQR 40-50) with 3 of 91 (3.3%) failures, and 13 of 88 (14.7%) <35 µL. TCB C-peptide showed good agreement with venous plasma (mean venous ln[C-peptide] - TCB ln[C-peptide] = 0.008, 95% CI [-0.23, 0.29], with 100% [36 of 36] sensitivity/100% [50 of 50] specificity to detect venous C-peptide ≥200 pmol/L). Where venous serum in multiple autoantibody positive TCB plasma agreed in 22 of 32 (sensitivity 69%), comparative specificity was 35 of 36 (97%). TCB was preferred to venous sampling (type 1 diabetes: 63% vs. 7%; 30% undecided). CONCLUSIONS: Transdermal capillary testing for C-peptide is a sensitive, specific, and acceptable alternative to venous sampling; TCB sampling for islet autoantibodies needs further assessment.


Assuntos
Diabetes Mellitus Tipo 1 , Adulto , Criança , Humanos , Idoso , Peptídeo C , Autoanticorpos , Coleta de Amostras Sanguíneas , Biomarcadores , Glutamato Descarboxilase
8.
JAMA ; 330(12): 1151-1160, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37682551

RESUMO

Importance: The incidence of diabetes in childhood has increased during the COVID-19 pandemic. Elucidating whether SARS-CoV-2 infection is associated with islet autoimmunity, which precedes type 1 diabetes onset, is relevant to disease etiology and future childhood diabetes trends. Objective: To determine whether there is a temporal relationship between SARS-CoV-2 infection and the development of islet autoimmunity in early childhood. Design, Setting, and Participants: Between February 2018 and March 2021, the Primary Oral Insulin Trial, a European multicenter study, enrolled 1050 infants (517 girls) aged 4 to 7 months with a more than 10% genetically defined risk of type 1 diabetes. Children were followed up through September 2022. Exposure: SARS-CoV-2 infection identified by SARS-CoV-2 antibody development in follow-up visits conducted at 2- to 6-month intervals until age 2 years from April 2018 through June 2022. Main Outcomes and Measures: The development of multiple (≥2) islet autoantibodies in follow-up in consecutive samples or single islet antibodies and type 1 diabetes. Antibody incidence rates and risk of developing islet autoantibodies were analyzed. Results: Consent was obtained for 885 (441 girls) children who were included in follow-up antibody measurements from age 6 months. SARS-CoV-2 antibodies developed in 170 children at a median age of 18 months (range, 6-25 months). Islet autoantibodies developed in 60 children. Six of these children tested positive for islet autoantibodies at the same time as they tested positive for SARS-CoV-2 antibodies and 6 at the visit after having tested positive for SARS-CoV-2 antibodies. The sex-, age-, and country-adjusted hazard ratio for developing islet autoantibodies when the children tested positive for SARS-CoV-2 antibodies was 3.5 (95% CI, 1.6-7.7; P = .002). The incidence rate of islet autoantibodies was 3.5 (95% CI, 2.2-5.1) per 100 person-years in children without SARS-CoV-2 antibodies and 7.8 (95% CI, 5.3-19.0) per 100 person-years in children with SARS-CoV-2 antibodies (P = .02). Islet autoantibody risk in children with SARS-CoV-2 antibodies was associated with younger age (<18 months) of SARS-CoV-2 antibody development (HR, 5.3; 95% CI, 1.5-18.3; P = .009). Conclusion and relevance: In young children with high genetic risk of type 1 diabetes, SARS-CoV-2 infection was temporally associated with the development of islet autoantibodies.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Pré-Escolar , Feminino , Humanos , Lactente , Anticorpos Antivirais/imunologia , Autoanticorpos/imunologia , Autoimunidade/imunologia , COVID-19/complicações , COVID-19/imunologia , Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Pandemias , SARS-CoV-2 , Ilhotas Pancreáticas/imunologia , Masculino , Predisposição Genética para Doença
9.
Genome Med ; 15(1): 69, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700317

RESUMO

BACKGROUND: The immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in COVID-19 patients has been extensively investigated. However, much less is known about the long-term effects of infection in patients and how it could affect the immune system and its capacity to respond to future perturbations. METHODS: Using a targeted single-cell multiomics approach, we have recently identified a prolonged anti-inflammatory gene expression signature in T and NK cells in type 1 diabetes patients treated with low-dose IL-2. Here, we investigated the dynamics of this signature in three independent cohorts of COVID-19 patients: (i) the Oxford COVID-19 Multi-omics Blood Atlas (COMBAT) dataset, a cross-sectional cohort including 77 COVID-19 patients and ten healthy donors; (ii) the INCOV dataset, consisting of 525 samples taken from 209 COVID-19 patients during and after infection; and (iii) a longitudinal dataset consisting of 269 whole-blood samples taken from 139 COVID-19 patients followed for a period of up to 7 months after the onset of symptoms using a bulk transcriptomic approach. RESULTS: We discovered that SARS-CoV-2 infection leads to a prolonged alteration of the gene expression profile of circulating T, B and NK cells and monocytes. Some of the genes affected were the same as those present in the IL-2-induced anti-inflammatory gene expression signature but were regulated in the opposite direction, implying a pro-inflammatory status. The altered transcriptional profile was detected in COVID-19 patients for at least 2 months after the onset of the disease symptoms but was not observed in response to influenza infection or sepsis. Gene network analysis suggested a central role for the transcriptional factor NF-κB in the regulation of the observed transcriptional alterations. CONCLUSIONS: SARS-CoV-2 infection causes a prolonged increase in the pro-inflammatory transcriptional status that could predispose post-acute patients to the development of long-term health consequences, including autoimmune disease, reactivation of other viruses and disruption of the host immune system-microbiome ecosystem.


Assuntos
COVID-19 , Microbiota , Humanos , COVID-19/genética , SARS-CoV-2 , Estudos Transversais , Interleucina-2
10.
Discov Immunol ; 2(1): kyad012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649552

RESUMO

Human CD56br natural killer (NK) cells represent a small subset of CD56+ NK cells in circulation and are largely tissue-resident. The frequency and number of CD56br NK cells in blood has been shown to increase following administration of low-dose IL-2 (LD-IL2), a therapy aimed to specifically expand CD4+ regulatory T cells (Tregs). Given the potential clinical application of LD-IL-2 immunotherapy across several immune diseases, including the autoimmune disease type 1 diabetes, a better understanding of the functional consequences of this expansion is urgently needed. In this study, we developed an in vitro co-culture assay with activated CD4+ T cells to measure NK cell killing efficiency. We show that CD56br and CD56dim NK cells show similar efficiency at killing activated CD4+ conventional T (Tconv) and Treg cell subsets. However, in contrast to CD56dim cells, CD56br NK cells preferentially target highly proliferative cells. We hypothesize that CD56br NK cells have an immunoregulatory role through the elimination of proliferating autoreactive CD4+ Tconv cells that have escaped Treg suppression. These results have implications for the interpretation of current and future trials of LD-IL-2 by providing evidence for a new, possibly beneficial immunomodulatory mechanism of LD-IL-2-expanded CD56br NK cells.

11.
Sci Rep ; 13(1): 7426, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156888

RESUMO

The key to limiting SARS-CoV-2 spread is to identify virus-infected individuals (both symptomatic and asymptomatic) and isolate them from the general population. Hence, routine weekly testing for SARS-CoV-2 in all asymptomatic (capturing both infected and non-infected) individuals is considered critical in situations where a large number of individuals co-congregate such as schools, prisons, aged care facilities and industrial workplaces. Such testing is hampered by operational issues such as cost, test availability, access to healthcare workers and throughput. We developed the SalivaDirect RT-qPCR assay to increase access to SARS-CoV-2 testing via a low-cost, streamlined protocol using self-collected saliva. To expand the single sample testing protocol, we explored multiple extraction-free pooled saliva testing workflows prior to testing with the SalivaDirect RT-qPCR assay. A pool size of five, with or without heat inactivation at 65 °C for 15 min prior to testing resulted in a positive agreement of 98% and 89%, respectively, and an increased Ct value shift of 1.37 and 1.99 as compared to individual testing of the positive clinical saliva specimens. Applying this shift in Ct value to 316 individual, sequentially collected, SARS-CoV-2 positive saliva specimen results reported from six clinical laboratories using the original SalivaDirect assay, 100% of the samples would have been detected (Ct value < 45) had they been tested in the 1:5 pool strategy. The availability of multiple pooled testing workflows for laboratories can increase test turnaround time, permitting results in a more actionable time frame while minimizing testing costs and changes to laboratory operational flow.


Assuntos
COVID-19 , Humanos , Idoso , COVID-19/diagnóstico , Teste para COVID-19 , SARS-CoV-2/genética , Saliva , RNA , Manejo de Espécimes , RNA Viral/genética
12.
Nat Commun ; 14(1): 2071, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045832

RESUMO

Dysfunction of interleukin-10 producing regulatory B cells has been associated with the pathogenesis of autoimmune diseases, but whether regulatory B cells can be therapeutically induced in humans is currently unknown. Here we demonstrate that a subset of activated B cells expresses CD25, and the addition of low-dose recombinant IL-2 to in vitro stimulated peripheral blood and splenic human B cells augments IL-10 secretion. Administration of low dose IL-2, aldesleukin, to patients increases IL-10-producing B cells. Single-cell RNA sequencing of circulating immune cells isolated from low dose IL2-treated patients reveals an increase in plasmablast and plasma cell populations that are enriched for a regulatory B cell gene signature. The transcriptional repressor BACH2 is significantly down-regulated in plasma cells from IL-2-treated patients, BACH2 binds to the IL-10 gene promoter, and Bach2 depletion or genetic deficiency increases B cell IL-10, implicating BACH2 suppression as an important mechanism by which IL-2 may promote an immunoregulatory phenotype in B cells.


Assuntos
Interleucina-10 , Interleucina-2 , Humanos , Interleucina-2/efeitos adversos , Interleucina-10/metabolismo , Linfócitos B , Plasmócitos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
13.
Nat Immunol ; 24(5): 767-779, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37095375

RESUMO

Sepsis arises from diverse and incompletely understood dysregulated host response processes following infection that leads to life-threatening organ dysfunction. Here we showed that neutrophils and emergency granulopoiesis drove a maladaptive response during sepsis. We generated a whole-blood single-cell multiomic atlas (272,993 cells, n = 39 individuals) of the sepsis immune response that identified populations of immunosuppressive mature and immature neutrophils. In co-culture, CD66b+ sepsis neutrophils inhibited proliferation and activation of CD4+ T cells. Single-cell multiomic mapping of circulating hematopoietic stem and progenitor cells (HSPCs) (29,366 cells, n = 27) indicated altered granulopoiesis in patients with sepsis. These features were enriched in a patient subset with poor outcome and a specific sepsis response signature that displayed higher frequencies of IL1R2+ immature neutrophils, epigenetic and transcriptomic signatures of emergency granulopoiesis in HSPCs and STAT3-mediated gene regulation across different infectious etiologies and syndromes. Our findings offer potential therapeutic targets and opportunities for stratified medicine in severe infection.


Assuntos
Neutrófilos , Sepse , Humanos , Hematopoese , Células-Tronco Hematopoéticas , Regulação da Expressão Gênica
14.
Adv Clin Exp Med ; 32(4): 441-448, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36398372

RESUMO

BACKGROUND: Cardiovascular safety of marathon running middle-aged amateurs remains unclear. We previously hypothesized that transient release of cardiac troponin I (cTnI) and N-terminal pro-B-type natriuretic peptide (NT-proBNP), in addition to an acute inflammatory response to exercise, may be the cause. OBJECTIVES: To evaluate the effects of running a marathon on inflammatory biomarkers, and its impact on cardiovascular function. MATERIAL AND METHODS: Thirty-three healthy male amateur runners aged ≥50 (mean age: 57 ±7 years) were enrolled in the study. Venous blood samples were obtained before the marathon, just after the race, and 2-4 days and 7 days after the marathon. Using novel single molecule counting (SMC) technology, we measured plasma concentrations of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α). White blood cell (WBC) count was measured using a certified hematology analyzer. The results were related to previous analyses on cardiovascular stress and endothelial function biomarkers. Transthoracic echocardiography (TTE) and cardiac magnetic resonance (CMR) were used to determine myocardial function. RESULTS: We observed a sharp rise of all studied biomarkers after the race, which subsequently normalized after 2-4 days and stayed within the normal range 7 days after the race. We found no correlation between inflammatory and cardiovascular stress biomarkers. Transthoracic echocardiography and CMR did not show ischemic or inflammatory myocardial damage. CONCLUSIONS: Marathon running is associated with a sharp and significant rise in inflammatory and cardiovascular stress biomarkers. We found no connection between immune activation and cardiac biomarker release. Cardiovascular imaging showed no myocardial damage due to ischemia or inflammation.


Assuntos
Coração , Corrida de Maratona , Pessoa de Meia-Idade , Masculino , Humanos , Ecocardiografia/métodos , Miocárdio , Biomarcadores
15.
Arch Dis Child ; 108(1): 26-30, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36171064

RESUMO

OBJECTIVE: INGR1D (INvestigating Genetic Risk for type 1 Diabetes) was a type 1 diabetes (T1D) genetic screening study established to identify participants for a primary prevention trial (POInT, Primary Oral Insulin Trial). METHODS: The majority of participants were recruited by research midwives in antenatal clinics from 18 weeks' gestation. Using the NHS Newborn Bloodspot Screening Programme (NBSP) infrastructure, participants enrolled in INGR1D had an extra sample taken from their day 5 bloodspot card sent for T1D genetic screening. Those at an increased risk of T1D were informed of the result, given education about T1D and the opportunity to take part in POInT. RESULTS: Between April 2018 and November 2020, 66% of women approached about INGR1D chose to participate. 15 660 babies were enrolled into INGR1D and 14 731 blood samples were processed. Of the processed samples, 157 (1%) had confirmed positive results, indicating an increased risk of T1D, of whom a third (n=49) enrolled into POInT (20 families were unable to participate in POInT due to COVID-19 lockdown restrictions). CONCLUSION: The use of prospective consent to perform personalised genetic testing on samples obtained through the routine NBSP represents a novel mechanism for clinical genetic research in the UK and provides a model for further population-based genetic studies in the newborn.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 1 , Recém-Nascido , Feminino , Humanos , Gravidez , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Estudos Prospectivos , Controle de Doenças Transmissíveis , Testes Genéticos , Consentimento Livre e Esclarecido , Reino Unido
16.
Nat Commun ; 13(1): 7324, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443294

RESUMO

Despite early clinical successes, the mechanisms of action of low-dose interleukin-2 (LD-IL-2) immunotherapy remain only partly understood. Here we examine the effects of interval administration of low-dose recombinant IL-2 (iLD-IL-2) in type 1 diabetes using high-resolution single-cell multiomics and flow cytometry on longitudinally-collected peripheral blood samples. Our results confirm that iLD-IL-2 selectively expands thymic-derived FOXP3+HELIOS+ regulatory T cells and CD56bright NK cells, and show that the treatment reduces the frequency of IL-21-producing CD4+ T cells and of two innate-like mucosal-associated invariant T and Vγ9Vδ2 CD8+ T cell subsets. The cellular changes induced by iLD-IL-2 associate with an anti-inflammatory gene expression signature, which remains detectable in all T and NK cell subsets analysed one month after treatment. These findings warrant investigations into the potential longer-term clinical benefits of iLD-IL-2 in immunotherapy.


Assuntos
Diabetes Mellitus Tipo 1 , Interleucina-2 , Linfócitos T , Humanos , Anti-Inflamatórios , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/genética , Expressão Gênica , Interleucina-2/genética , Linfócitos T/imunologia
17.
J Clin Invest ; 132(20)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36250461

RESUMO

The etiology of type 1 diabetes has polygenic and environmental determinants that lead to autoimmune responses against pancreatic ß cells and promote ß cell death. The autoimmunity is considered silent without metabolic consequences until late preclinical stages,and it remains unknown how early in the disease process the pancreatic ß cell is compromised. To address this, we investigated preprandial nonfasting and postprandial blood glucose concentrations and islet autoantibody development in 1,050 children with high genetic risk of type 1 diabetes. Pre- and postprandial blood glucose decreased between 4 and 18 months of age and gradually increased until the final measurements at 3.6 years of age. Determinants of blood glucose trajectories in the first year of life included sex, body mass index, glucose-related genetic risk scores, and the type 1 diabetes-susceptible INS gene. Children who developed islet autoantibodies had early elevations in blood glucose concentrations. A sharp and sustained rise in postprandial blood glucose was observed at around 2 months prior to autoantibody seroconversion, with further increases in postprandial and, subsequently, preprandial values after seroconversion. These findings show heterogeneity in blood glucose control in infancy and early childhood and suggest that islet autoimmunity is concurrent or subsequent to insults on the pancreatic islets.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Autoanticorpos , Autoimunidade , Glicemia , Criança , Pré-Escolar , Predisposição Genética para Doença , Humanos
18.
Genome Biol ; 23(1): 196, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109769

RESUMO

BACKGROUND: Non-coding genetic variants that influence gene transcription in pancreatic islets play a major role in the susceptibility to type 2 diabetes (T2D), and likely also contribute to type 1 diabetes (T1D) risk. For many loci, however, the mechanisms through which non-coding variants influence diabetes susceptibility are unknown. RESULTS: We examine splicing QTLs (sQTLs) in pancreatic islets from 399 human donors and observe that common genetic variation has a widespread influence on the splicing of genes with established roles in islet biology and diabetes. In parallel, we profile expression QTLs (eQTLs) and use transcriptome-wide association as well as genetic co-localization studies to assign islet sQTLs or eQTLs to T2D and T1D susceptibility signals, many of which lack candidate effector genes. This analysis reveals biologically plausible mechanisms, including the association of T2D with an sQTL that creates a nonsense isoform in ERO1B, a regulator of ER-stress and proinsulin biosynthesis. The expanded list of T2D risk effector genes reveals overrepresented pathways, including regulators of G-protein-mediated cAMP production. The analysis of sQTLs also reveals candidate effector genes for T1D susceptibility such as DCLRE1B, a senescence regulator, and lncRNA MEG3. CONCLUSIONS: These data expose widespread effects of common genetic variants on RNA splicing in pancreatic islets. The results support a role for splicing variation in diabetes susceptibility, and offer a new set of genetic targets with potential therapeutic benefit.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , RNA Longo não Codificante , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/genética , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Humanos , Ilhotas Pancreáticas/metabolismo , Proinsulina/genética , Proinsulina/metabolismo , Isoformas de Proteínas/genética , Splicing de RNA , RNA Longo não Codificante/metabolismo
19.
Sci Rep ; 12(1): 14137, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986039

RESUMO

We recently mapped a genetic susceptibility locus on chromosome 6q22.33 for type 1 diabetes (T1D) diagnosed below the age of 7 years between the PTPRK and thymocyte-selection-associated (THEMIS) genes. As the thymus plays a central role in shaping the T cell repertoire, we aimed to identify the most likely causal genetic factors behind this association using thymocyte genomic data. In four thymocyte populations, we identified 253 DNA sequence motifs underlying histone modifications. The G insertion allele of rs138300818, associated with protection from diabetes, created thymocyte motifs for multiple histone modifications and thymocyte types. In a parallel approach to identifying variants that alter transcription factor binding motifs, the same variant disrupted a predicted motif for Rfx7, which is abundantly expressed in the thymus. Chromatin state and RNA sequencing data suggested strong transcription overlapping rs138300818 in fetal thymus, while expression quantitative trait locus and chromatin conformation data associate the insertion with lower THEMIS expression. Extending the analysis to other T1D loci further highlighted rs66733041 affecting the GATA3 transcription factor binding in the AFF3 locus. Taken together, our results support a role for thymic THEMIS gene expression and the rs138300818 variant in promoting the development of early-onset T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Timócitos , Criança , Cromatina/genética , Cromatina/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Predisposição Genética para Doença , Humanos , Lactente , Locos de Características Quantitativas , Timócitos/metabolismo
20.
Diabetologia ; 65(10): 1701-1709, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867130

RESUMO

AIMS/HYPOTHESIS: Enteroviral infection has been implicated consistently as a key environmental factor correlating with the appearance of autoimmunity and/or the presence of overt type 1 diabetes, in which pancreatic insulin-producing beta cells are destroyed by an autoimmune response. Genetic predisposition through variation in the type 1 diabetes risk gene IFIH1 (interferon induced with helicase C domain 1), which encodes the viral pattern-recognition receptor melanoma differentiation-associated protein 5 (MDA5), supports a potential link between enterovirus infection and type 1 diabetes. METHODS: We used molecular techniques to detect enterovirus RNA in peripheral blood samples (in separated cellular compartments or plasma) from two cohorts comprising 79 children or 72 adults that include individuals with and without type 1 diabetes who had multiple autoantibodies. We also used immunohistochemistry to detect the enteroviral protein VP1 in the pancreatic islets of post-mortem donors (n=43) with type 1 diabetes. RESULTS: We observed enhanced detection sensitivity when sampling the cellular compartment compared with the non-cellular compartment of peripheral blood (OR 21.69; 95% CI 3.64, 229.20; p<0.0001). In addition, we show that children with autoimmunity are more likely to test positive for enterovirus RNA than those without autoimmunity (OR 11.60; 95% CI 1.89, 126.90; p=0.0065). Furthermore, we found that individuals carrying the predisposing allele (946Thr) of the common variant in IFIH1 (rs1990760, Thr946Ala) are more likely to test positive for enterovirus in peripheral blood (OR 3.07; 95% CI 1.02, 8.58; p=0.045). In contrast, using immunohistochemistry, there was no correlation between the common variant in IFIH1 and detection of enteroviral VP1 protein in the pancreatic islets of donors with type 1 diabetes. CONCLUSIONS/INTERPRETATION: Our data indicate that, in peripheral blood, antigen-presenting cells are the predominant source of enterovirus infection, and that infection is correlated with disease stage and genetic predisposition, thereby supporting a role for enterovirus infection prior to disease onset.


Assuntos
Diabetes Mellitus Tipo 1 , Infecções por Enterovirus , Enterovirus , Insulinas , Adulto , Alelos , Autoanticorpos/metabolismo , Criança , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Enterovirus/genética , Infecções por Enterovirus/genética , Predisposição Genética para Doença , Humanos , Insulinas/genética , Insulinas/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Leucócitos Mononucleares/metabolismo , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...