Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 70(7): 1380-1401, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35388544

RESUMO

Müller glia (MG) in mammalian retinas are incapable of regenerating neurons after damage, whereas the MG in lower vertebrates regenerate functional neurons. Identification of cell signaling pathways and gene regulatory networks that regulate MG-mediated regeneration is key to harnessing the regenerative potential of MG. Here, we study how NFkB-signaling influences glial responses to damage and reprogramming of MG into neurons in the rodent retina. We find activation of NFkB and dynamic expression of NFkB-associated genes in MG after damage, however damage-induced NFkB activation is inhibited by microglia ablation. Knockout of NFkB in MG suppressed the accumulation of immune cells after damage. Inhibition of NFkB following NMDA-damage significantly enhanced the reprogramming of Ascl1-overexpressing MG into neuron-like cells. scRNA-seq of retinal glia following inhibition of NFkB reveals coordination with signaling via TGFß2 and suppression of NFI and Id transcription factors. Inhibition of Smad3 signal transducer or Id transcription factors increased numbers of neuron-like cells produced by Ascl1-overexpressing MG. We conclude that NFkB is a key signaling hub that is activated in MG after damage, mediates the accumulation of immune cells, and suppresses the neurogenic potential of MG.


Assuntos
Células Ependimogliais , Neuroglia , Animais , Proliferação de Células/fisiologia , Células Ependimogliais/metabolismo , Mamíferos/metabolismo , NF-kappa B/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Regeneração , Retina , Transdução de Sinais , Fatores de Transcrição/metabolismo
2.
Glia ; 70(4): 661-674, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34939240

RESUMO

Ischemic preconditioning (IPC) is a phenomenon whereby a brief, non-injurious ischemic exposure enhances tolerance to a subsequent ischemic challenge. The mechanism of IPC has mainly been studied in rodent stroke models where gray matter (GM) constitutes about 85% of the cerebrum. In humans, white matter (WM) is 50% of cerebral volume and is a critical component of stroke damage. We developed a novel CNS WM IPC model using the mouse optic nerve (MON) and identified the involved immune signaling pathways. Here we tested the hypothesis that microglia are necessary for WM IPC. Microglia were depleted by treatment with the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX5622. MONs were exposed to transient ischemia in vivo, acutely isolated 72 h later, and subjected to oxygen-glucose deprivation (OGD) to simulate a severe ischemic injury (i.e., stroke). Functional and structural axonal recovery was assessed by recording compound action potentials (CAPs) and by microscopy using quantitative stereology. Microglia depletion eliminated IPC-mediated protection. In control mice, CAP recovery was improved in preconditioned MONs compared with non-preconditioned MONs, however, in PLX5622-treated mice, we observed no difference in CAP recovery between preconditioned and non-preconditioned MONs. Microgliadepletion also abolished IPC protective effects on axonal integrity and survival of mature (APC+ ) oligodendrocytes after OGD. IPC-mediated protection was independent of retinal injury suggesting it results from mechanistic processes intrinsic to ischemia-exposed WM. We conclude that preconditioned microglia are critical for IPC in WM. The "preconditioned microglia" phenotype might protect against other CNS pathologies and is a neurotherapeutic horizon worth exploring.


Assuntos
Precondicionamento Isquêmico , Acidente Vascular Cerebral , Substância Branca , Animais , Córtex Cerebral/metabolismo , Precondicionamento Isquêmico/métodos , Camundongos , Microglia/metabolismo , Acidente Vascular Cerebral/metabolismo , Substância Branca/metabolismo
3.
Science ; 370(6519)2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33004674

RESUMO

Injury induces retinal Müller glia of certain cold-blooded vertebrates, but not those of mammals, to regenerate neurons. To identify gene regulatory networks that reprogram Müller glia into progenitor cells, we profiled changes in gene expression and chromatin accessibility in Müller glia from zebrafish, chick, and mice in response to different stimuli. We identified evolutionarily conserved and species-specific gene networks controlling glial quiescence, reactivity, and neurogenesis. In zebrafish and chick, the transition from quiescence to reactivity is essential for retinal regeneration, whereas in mice, a dedicated network suppresses neurogenic competence and restores quiescence. Disruption of nuclear factor I transcription factors, which maintain and restore quiescence, induces Müller glia to proliferate and generate neurons in adult mice after injury. These findings may aid in designing therapies to restore retinal neurons lost to degenerative diseases.


Assuntos
Reprogramação Celular/genética , Células Ependimogliais/citologia , Redes Reguladoras de Genes , Regeneração Nervosa/genética , Neurogênese/genética , Animais , Galinhas , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , RNA-Seq , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...