Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Mol Ther Oncolytics ; 30: 72-85, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37583387

RESUMO

A complete resection of tongue cancer is often difficult. We investigate the usefulness of administering G47Δ (teserpaturev), a triple-mutated oncolytic herpes simplex virus type 1, prior to resection. G47Δ exhibits good cytopathic effects and replication capabilities in all head and neck cancer cell lines tested. In an orthotopic SCCVII tongue cancer model of C3H/He mice, an intratumoral inoculation with G47Δ significantly prolongs the survival. Further, mice with orthotopic tongue cancer received neoadjuvant G47Δ (or mock) therapy with or without "hemilateral" resection, the maximum extent avoiding surgical deaths. Neoadjuvant G47Δ and resection led to 10/10 survival (120 days), whereas the survivals for G47Δ alone and resection alone were 6/10 and 5/10, respectively: all control animals died by day 11. Furthermore, 100% survival was achieved with neoadjuvant G47Δ therapy even when the resection area was narrowed to "partial," providing insufficient resection margins, whereas hemilateral resection alone caused death by local recurrence in half of the animals. G47Δ therapy caused increased number of tumor-infiltrating CD8+ and CD4+ cells, increased F4/80+ cells within the residual tongues, and increased expression of immune-related genes in and around the tumor. These results imply that neoadjuvant use of G47Δ is useful for preventing local recurrence after tongue cancer surgery.

2.
Sci Rep ; 13(1): 10757, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402770

RESUMO

ARL-17477 is a selective neuronal nitric oxide synthase (NOS1) inhibitor that has been used in many preclinical studies since its initial discovery in the 1990s. In the present study, we demonstrate that ARL-17477 exhibits a NOS1-independent pharmacological activity that involves inhibition of the autophagy-lysosomal system and prevents cancer growth in vitro and in vivo. Initially, we screened a chemical compound library for potential anticancer agents, and identified ARL-17477 with micromolar anticancer activity against a wide spectrum of cancers, preferentially affecting cancer stem-like cells and KRAS-mutant cancer cells. Interestingly, ARL-17477 also affected NOS1-knockout cells, suggesting the existence of a NOS1-independent anticancer mechanism. Analysis of cell signals and death markers revealed that LC3B-II, p62, and GABARAP-II protein levels were significantly increased by ARL-17477. Furthermore, ARL-17477 had a chemical structure similar to that of chloroquine, suggesting the inhibition of autophagic flux at the level of lysosomal fusion as an underlying anticancer mechanism. Consistently, ARL-17477 induced lysosomal membrane permeabilization, impaired protein aggregate clearance, and activated transcription factor EB and lysosomal biogenesis. Furthermore, in vivo ARL-17477 inhibited the tumor growth of KRAS-mutant cancer. Thus, ARL-17477 is a dual inhibitor of NOS1 and the autophagy-lysosomal system that could potentially be used as a cancer therapeutic.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Autofagia/fisiologia , Neoplasias/patologia , Lisossomos/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo
3.
Cancer Res Commun ; 3(1): 148-159, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36968222

RESUMO

Glioma stem cells (GSC) promote the malignancy of glioblastoma (GBM), the most lethal brain tumor. ERK5 belongs to the MAPK family. Here, we demonstrated that MAPK kinase 5 (MEK5)-ERK5-STAT3 pathway plays an essential role in maintaining GSC stemness and tumorigenicity by integrating genetic and pharmacologic manipulation and RNA sequencing analysis of clinical specimens. ERK5 was highly expressed and activated in GSCs. ERK5 silencing by short hairpin RNA in GSCs suppressed the self-renewal potential and GBM malignant growth concomitant with downregulation of STAT3 phosphorylation. Conversely, the activation of the MEK5-ERK5 pathway by introducing ERK5 or MEK5 resulted in increased GSC stemness. The introduction of STAT3 counteracted the GSC phenotypes by ERK5 silencing. Moreover, ERK5 expression and signaling are associated with poor prognosis in patients with GBM with high stem cell properties. Finally, pharmacologic inhibition of ERK5 significantly inhibited GSC self-renewal and GBM growth. Collectively, these findings uncover a crucial role of the MEK5-ERK5-STAT3 pathway in maintaining GSC phenotypes and GBM malignant growth, thereby providing a potential target for GSC-directed therapy. Significance: In this study, we demonstrated that MEK5-ERK5-STAT3 axis plays a critical role in maintaining stemness and tumorigenicity in GSCs by using genetic, pharmacologic, and bioinformatics tools, identifying the MEK5-ERK5-STAT3 axis as a potential target for GSC-directed therapy.


Assuntos
Glioblastoma , Glioma , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Glioma/genética , Glioblastoma/genética
4.
Commun Med (Lond) ; 3(1): 40, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966232

RESUMO

BACKGROUND: G47∆ is a triple-mutated oncolytic herpes simplex virus type 1 (HSV-1) recently approved as a new drug for malignant glioma in Japan. As the next-generation, we develop armed oncolytic HSV-1 using G47∆ as the backbone. Because oncolytic HSV-1 elicits specific antitumor immunity, interleukin 12 (IL-12) can function as an effective payload to enhance the efficacy. METHODS: We evaluate the optimal methods for expressing IL-12 as a payload for G47∆-based oncolytic HSV-1. Two new armed viruses are generated for evaluation by employing different methods to express IL-12: T-mfIL12 expresses murine IL-12 as a fusion peptide, with the genes of two subunits (p35 and p40) linked by bovine elastin motifs, and T-mIL12-IRES co-expresses the subunits, with the two genes separated by an internal ribosome entry site (IRES) sequence. RESULTS: T-mfIL12 is significantly more efficient in producing IL-12 than T-mIL12-IRES in all cell lines tested, whereas the expression methods do not affect the replication capabilities and cytopathic effects. In two syngeneic mouse subcutaneous tumor models of Neuro2a and TRAMP-C2, T-mfIL12 exhibits a significantly higher efficacy than T-mIL12-IRES when inoculated intratumorally. Furthermore, T-mfIL12 shows a significantly higher intratumoral expression of functional IL-12, causing stronger stimulation of specific antitumor immune responses than T-mIL12-IRES. CONCLUSIONS: The results implicate that a fusion-type expression of IL-12 is a method superior to co-expression of separate subunits, due to higher production of functional IL-12 molecules. This study led to the creation of triple-mutated oncolytic HSV-1 armed with human IL-12 currently used in phase 1/2 trial for malignant melanoma.


Some viruses, including the herpes virus, can be modified so that they can target and kill cancers. These viruses can be loaded with factors that stimulate the immune system, which can help to eradicate cancer cells. Here, we test different methods of loading a cancer-killing version of the herpes virus with interleukin 12, an immune-stimulating factor. We show that one method, which involves loading the virus with the different parts of interleukin 12 fused together, is superior to another, and leads to improved anti-cancer effects in mouse models. These findings have contributed to the creation of a cancer-killing virus that is currently in clinical trials in patients with melanoma.

5.
Mol Ther Oncolytics ; 28: 31-43, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36619294

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease known for its dense tumor stroma. Focal adhesion kinase inhibitor (FAKi), a non-receptor type tyrosine kinase inhibitor, reduces the tumor stroma. G47Δ, a third-generation oncolytic herpes simplex virus type 1, destroys tumor cells selectively and induces antitumor immune responses. This study evaluates the efficacy of FAKi and G47Δ in PDAC models in combination with or without immune checkpoint inhibitors. G47Δ was effective in human PDAC cell lines in vitro and in subcutaneous as well as orthotopic tumor models. Transgenic mouse-derived #146 cells were used to generate subcutaneous PDAC tumors with rich stroma in immunocompetent mice. In this #146 tumor model, the efficacy of FAKi was synergistically augmented when combined with G47Δ, which reflected not only a decreased stromal content but also a significant shifting of the tumor microenvironment toward immune stimulation. In transgenic autochthonous PKF mice, a rare model that develops stroma-rich PDAC with a 100% penetrance and resembles human PDAC in various aspects, the prolongation of survival compared with FAKi alone was achieved only when FAKi was combined with G47Δ and immune checkpoint inhibitors. The FAKi combination therapy may be useful to overcome the treatment resistance of stroma-rich PDAC.

6.
Mol Ther Oncolytics ; 26: 265-274, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35991754

RESUMO

Glioblastoma is a devastating malignant brain tumor with a poor prognosis despite standard therapy. Podoplanin (PDPN), a type I transmembrane mucin-like glycoprotein that is overexpressed in various cancers, is a potential therapeutic target for the treatment of glioblastoma. We previously reported the efficacy of chimeric antigen receptor (CAR)-T cells using an anti-pan-PDPN monoclonal antibody (mAb; NZ-1)-based third-generation CAR in a xenograft mouse model. However, NZ-1 also reacted with PDPN-expressing normal cells, such as lymphatic endothelial cells, pulmonary alveolar type I cells, and podocytes. To overcome possible on-target-off-tumor effects, we produced a cancer-specific mAb (CasMab, LpMab-2)-based CAR. LpMab-2 (Lp2) reacted with PDPN-expressing cancer cells but not with normal cells. In this study, Lp2-CAR-transduced T cells (Lp2-CAR-T) specifically targeted PDPN-expressing glioma cells while sparing the PDPN-expressing normal cells. Lp2-CAR-T also killed patient-derived glioma stem cells, demonstrating its clinical potential against glioblastoma. Systemic injection of Lp2-CAR-T cells inhibited the growth of a subcutaneous glioma xenograft model in immunodeficient mice. Combination therapy with Lp2-CAR-T and oncolytic virus G47Δ, a third-generation recombinant herpes simplex virus (HSV)-1, further inhibited the tumor growth and improved survival. These findings indicate that the combination therapy of Lp2-CAR-T cells and G47Δ may be a promising approach to treat glioblastoma.

7.
Nat Commun ; 13(1): 4119, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864115

RESUMO

Here, we report the results of a phase I/II, single-arm study (UMIN-CTR Clinical Trial Registry UMIN000002661) assessing the safety (primary endpoint) of G47∆, a triple-mutated oncolytic herpes simplex virus type 1, in Japanese adults with recurrent/progressive glioblastoma despite radiation and temozolomide therapies. G47Δ was administered intratumorally at 3 × 108 pfu (low dose) or 1 × 109 pfu (set dose), twice to identical coordinates within 5-14 days. Thirteen patients completed treatment (low dose, n = 3; set dose, n = 10). Adverse events occurred in 12/13 patients. The most common G47Δ-related adverse events were fever, headache and vomiting. Secondary endpoint was the efficacy. Median overall survival was 7.3 (95%CI 6.2-15.2) months and the 1-year survival rate was 38.5%, both from the last G47∆ administration. Median progression-free survival was 8 (95%CI 7-34) days from the last G47∆ administration, mainly due to immediate enlargement of the contrast-enhanced area of the target lesion on MRI. Three patients survived >46 months. One complete response (low dose) and one partial response (set dose) were seen at 2 years. Based on biopsies, post-administration MRI features (injection site contrast-enhancement clearing and entire tumor enlargement) likely reflected tumor cell destruction via viral replication and lymphocyte infiltration towards tumor cells, the latter suggesting the mechanism for "immunoprogression" characteristic to this therapy. This study shows that G47Δ is safe for treating recurrent/progressive glioblastoma and warrants further clinical development.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Herpes Simples , Herpesvirus Humano 1 , Terapia Viral Oncolítica , Vírus Oncolíticos , Adulto , Neoplasias Encefálicas/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/terapia , Herpes Simples/terapia , Herpesvirus Humano 1/genética , Humanos , Recidiva Local de Neoplasia/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética
8.
Nat Med ; 28(8): 1630-1639, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35864254

RESUMO

This investigator-initiated, phase 2, single-arm trial primarily assessed the efficacy of G47∆, a triple-mutated, third-generation oncolytic herpes simplex virus type 1, in 19 adult patients with residual or recurrent, supratentorial glioblastoma after radiation therapy and temozolomide (UMIN-CTR Clinical Trial Registry UMIN000015995). G47Δ was administered intratumorally and repeatedly for up to six doses. The primary endpoint of 1-yr survival rate after G47∆ initiation was 84.2% (95% confidence interval, 60.4-96.6; 16 of 19). The prespecified endpoint was met and the trial was terminated early. Regarding secondary endpoints, the median overall survival was 20.2 (16.8-23.6) months after G47∆ initiation and 28.8 (20.1-37.5) months from the initial surgery. The most common G47∆-related adverse event was fever (17 of 19) followed by vomiting, nausea, lymphocytopenia and leukopenia. On magnetic resonance imaging, enlargement of and contrast-enhancement clearing within the target lesion repeatedly occurred after each G47∆ administration, which was characteristic to this therapy. Thus, the best overall response in 2 yr was partial response in one patient and stable disease in 18 patients. Biopsies revealed increasing numbers of tumor-infiltrating CD4+/CD8+ lymphocytes and persistent low numbers of Foxp3+ cells. This study showed a survival benefit and good safety profile, which led to the approval of G47∆ as the first oncolytic virus product in Japan.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Herpesvirus Humano 1 , Terapia Viral Oncolítica , Vírus Oncolíticos , Adulto , Neoplasias Encefálicas/patologia , Progressão da Doença , Glioblastoma/patologia , Herpesvirus Humano 1/genética , Humanos , Recidiva Local de Neoplasia/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética
9.
Cancer Sci ; 113(8): 2716-2726, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35657693

RESUMO

Lysosomes function as the digestive system of a cell and are involved in macromolecular recycling, vesicle trafficking, metabolic reprogramming, and progrowth signaling. Although quality control of lysosome biogenesis is thought to be a potential target for cancer therapy, practical strategies have not been established. Here, we show that lysosomal membrane integrity supported by lysophagy, a selective autophagy for damaged lysosomes, is a promising therapeutic target for glioblastoma (GBM). In this study, we found that ifenprodil, an FDA-approved drug with neuromodulatory activities, efficiently inhibited spheroid formation of patient-derived GBM cells in a combination with autophagy inhibition. Ifenprodil increased intracellular Ca2+ level, resulting in mitochondrial reactive oxygen species-mediated cytotoxicity. The ifenprodil-induced Ca2+ elevation was due to Ca2+ release from lysosomes, but not endoplasmic reticulum, associated with galectin-3 punctation as an indicator of lysosomal membrane damage. As the Ca2+ release was enhanced by ATG5 deficiency, autophagy protected against lysosomal membrane damage. By comparative analysis of 765 FDA-approved compounds, we identified another clinically available drug for central nervous system (CNS) diseases, amoxapine, in addition to ifenprodil. Both compounds promoted degradation of lysosomal membrane proteins, indicating a critical role of lysophagy in quality control of lysosomal membrane integrity. Importantly, a synergistic inhibitory effect of ifenprodil and chloroquine, a clinically available autophagy inhibitor, on spheroid formation was remarkable in GBM cells, but not in nontransformed neural progenitor cells. Finally, chloroquine dramatically enhanced effects of the compounds inducing lysosomal membrane damage in a patient-derived xenograft model. These data demonstrate a therapeutic advantage of targeting lysosomal membrane integrity in GBM.


Assuntos
Glioblastoma , Glioma , Autofagia , Cloroquina/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioma/tratamento farmacológico , Glioma/metabolismo , Humanos , Lisossomos/metabolismo , Macroautofagia
10.
Mol Ther Oncolytics ; 25: 225-235, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35615265

RESUMO

Malignant soft tissue tumors, particularly highly malignant leiomyosarcomas, are resistant to chemotherapy and associated with a poor prognosis. T-01, a third-generation genetically modified herpes simplex virus type 1, replicates in tumor cells alone and exerts a cell-killing effect. The current study aimed to investigate the antitumor effect of T-01, which is a novel treatment for leiomyosarcoma. In vitro, six human cell lines and one mouse sarcoma cell line were assessed for T-01 cytotoxicity. In vivo, the efficacy of T-01 was examined in subcutaneously transplanted leiomyosarcoma (SK-LMS-1) cells and subcutaneously or intraperitoneally transplanted mouse sarcoma (CCRF S-180II) cells. Cytokines were assessed using ELISpot assay with splenocytes from the allogeneic models for immunological evaluation. T-01 showed cytotoxicity in all seven cell lines (p < 0.001). In the SK-LMS-1 xenotransplantation model, tumor growth was suppressed by T-01 administration (p = 0.02). In the CCRF S-180II subcutaneous tumor model, bilateral tumor growth was significantly suppressed in the T-01-treated group compared with the control group (p < 0.001). In the peritoneal dissemination model, T-01 treatment caused significant survival prolongation compared with the control (p < 0.01). In conclusion, third-generation genetically modified herpes simplex virus type 1 may be an effective novel therapy against refractory sarcomas.

11.
Commun Biol ; 5(1): 22, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017630

RESUMO

Glioma stem cells (GSCs) contribute to the pathogenesis of glioblastoma, the most malignant form of glioma. The implication and underlying mechanisms of SMAD specific E3 ubiquitin protein ligase 2 (SMURF2) on the GSC phenotypes remain unknown. We previously demonstrated that SMURF2 phosphorylation at Thr249 (SMURF2Thr249) activates its E3 ubiquitin ligase activity. Here, we demonstrate that SMURF2Thr249 phosphorylation plays an essential role in maintaining GSC stemness and tumorigenicity. SMURF2 silencing augmented the self-renewal potential and tumorigenicity of patient-derived GSCs. The SMURF2Thr249 phosphorylation level was low in human glioblastoma pathology specimens. Introduction of the SMURF2T249A mutant resulted in increased stemness and tumorigenicity of GSCs, recapitulating the SMURF2 silencing. Moreover, the inactivation of SMURF2Thr249 phosphorylation increases TGF-ß receptor (TGFBR) protein stability. Indeed, TGFBR1 knockdown markedly counteracted the GSC phenotypes by SMURF2T249A mutant. These findings highlight the importance of SMURF2Thr249 phosphorylation in maintaining GSC phenotypes, thereby demonstrating a potential target for GSC-directed therapy.


Assuntos
Glioblastoma , Receptores de Fatores de Crescimento Transformadores beta/genética , Ubiquitina-Proteína Ligases/genética , Animais , Carcinogênese/genética , Carcinogênese/patologia , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Mutação/genética , Fosforilação/genética
12.
Mol Oncol ; 16(1): 269-288, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34214250

RESUMO

Glioma-initiating cells (GICs), a major source of glioblastoma recurrence, are characterized by the expression of neural stem cell markers and the ability to grow by forming nonadherent spheres under serum-free conditions. Bone morphogenetic proteins (BMPs), members of the transforming growth factor-ß family, induce differentiation of GICs and suppress their tumorigenicity. However, the mechanisms underlying the BMP-induced loss of GIC stemness have not been fully elucidated. Here, we show that paired related homeobox 1 (PRRX1) induced by BMPs decreases the CD133-positive GIC population and inhibits tumorigenic activity of GICs in vivo. Of the two splice isoforms of PRRX1, the longer isoform, pmx-1b, but not the shorter isoform, pmx-1a, induces GIC differentiation. Upon BMP stimulation, pmx-1b interacts with the DNA methyltransferase DNMT3A and induces promoter methylation of the PROM1 gene encoding CD133. Silencing DNMT3A maintains PROM1 expression and increases the CD133-positive GIC population. Thus, pmx-1b promotes loss of stem cell-like properties of GICs through region-specific epigenetic regulation of CD133 expression by recruiting DNMT3A, which is associated with decreased tumorigenicity of GICs.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , DNA Metiltransferase 3A , Epigênese Genética , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo
13.
Mol Ther Oncolytics ; 23: 402-411, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34853811

RESUMO

Treatment options are limited for esophageal carcinoma (EC). G47Δ, a triple-mutated, conditionally replicating herpes simplex virus type 1 (HSV-1), exhibits enhanced killing of tumor cells with high safety features. Here, we studied the efficacy of G47Δ using preclinical models of human EC. In vitro, G47Δ showed efficient cytopathic effects and replication capabilities in all eight human esophageal cancer cell lines tested. In athymic mice harboring subcutaneous tumors of human EC (KYSE180, TE8, and OE19), two intratumoral injections with G47Δ significantly inhibited the tumor growth. To mimic the clinical treatment situations, we established an orthotopic EC model using luciferase-expressing TE8 cells (TE8-luc). An intratumoral injection with G47Δ markedly inhibited the growth of orthotopic TE8-luc tumors in athymic mice. Furthermore, we evaluated the safety of applying G47Δ to the esophagus in mice. A/J mice inoculated intraesophageally or administered orally with G47Δ (107 plaque-forming units [pfu]) survived for more than 2 months without remarkable symptoms, whereas the majority with wild-type HSV-1 (106 pfu) deteriorated within 10 days. PCR analyses showed that the G47Δ DNA was confined to the esophagus after intraesophageal inoculation and was not detected in major organs after oral administration. Our results provide a rationale for the clinical use of G47Δ for treating EC.

15.
Mol Ther Oncolytics ; 22: 388-398, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34553027

RESUMO

The prognosis of oral squamous cell carcinoma (OSCC) largely depends on the control of lymph node metastases. We evaluate the therapeutic efficacy of G47Δ, a third-generation oncolytic herpes simplex virus type 1 (HSV-1), in mouse tongue cancer models. Intratumoral injection with G47Δ prolonged the survival in all orthotopic models investigated. In both athymic and immunocompetent models, G47Δ injected into the tongue cancer swiftly traffics to the draining cervical lymph nodes and suppresses lymph node metastases. In the immunocompetent KLN205-MUC1 model, in which the metastatic cascade that tongue cancer patients commonly experience is reproduced, intratumoral G47Δ injection even immediately prior to a tumor resection prolonged survival. Cervical lymph nodes 18 h after G47Δ treatment showed the presence of G47Δ infection and an increase in CD69-positive cells, indicating an immediate activation of T cells. Furthermore, G47Δ injected directly into enlarged metastatic lymph nodes significantly prolonged the survival at an advanced stage. Whereas intratumorally injected oncolytic HSV-1 does not readily circulate in the blood stream, G47Δ is shown to traffic in the lymphatics swiftly. The use of G47Δ can lead to entirely new treatment strategies for tongue cancer and other OSCC at all clinical stages.

16.
Mol Ther Oncolytics ; 22: 129-142, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34514094

RESUMO

Oncolytic virus therapy can increase the immunogenicity of tumors and remodel the immunosuppressive tumor microenvironment, leading to an increased antitumor response to immune-checkpoint inhibitors. Here, we investigated the therapeutic potential of G47Δ, a third-generation oncolytic herpes simplex virus type 1, in combination with immune-checkpoint inhibitors using various syngeneic murine subcutaneous tumor models. Intratumoral inoculations with G47Δ and systemic anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) antibody administration caused an enhanced antitumor activity when combined and worked synergistically. Conversely, the efficacy of G47Δ in combination with anti-programmed cell death protein-1 (PD-1) antibody was equivalent to that of the anti-PD-1 antibody alone in all murine models examined. The combination of intratumoral G47Δ and systemic anti-CTLA-4 antibody was shown to recruit effector T cells into the tumor efficiently while decreasing regulatory T cells. Furthermore, a wide range of gene signatures related to inflammation, lymphoid lineage, and T cell activation was highly upregulated with the combination therapy, suggesting the conversion of immune-insusceptible tumors to immune susceptible. The therapeutic effect proved tumor specific and long lasting. Immune cell subset depletion studies demonstrated that CD4+ T cells were required for synergistic curative activity. The results depict the dynamics of immune modulation of the tumor microenvironment and provide a clinical rationale for using G47Δ with immune checkpoint inhibitors.

17.
Cancer Sci ; 112(8): 3293-3301, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34036669

RESUMO

Oncolytic virus therapy has emerged as a promising treatment option against cancer. To date, oncolytic viruses have been developed for malignant tumors, but the need for this new therapeutic modality also exists for benign and slow-growing tumors. G47∆ is an oncolytic herpes simplex virus type 1 (HSV-1) with an enhanced replication capability highly selective to tumor cells due to genetically engineered, triple mutations in the γ34.5, ICP6 and α47 genes. To create a powerful, but safe oncolytic HSV-1 that replicates efficiently in tumors regardless of growth speed, we used a bacterial artificial chromosome system that allows a desired promoter to regulate the expression of the ICP6 gene in the G47∆ backbone. Restoration of the ICP6 function in a tumor-specific manner using the hTERT promoter led to a highly capable oncolytic HSV-1. T-hTERT was more efficacious in the slow-growing OS-RC-2 and DU145 tumors than the control viruses, while retaining a high efficacy in the fast-growing U87MG tumors. The safety features are also retained, as T-hTERT proved safe when inoculated into the brain of HSV-1 sensitive A/J mice. This new technology should facilitate the use of oncolytic HSV-1 for all tumors irrespective of growth speed.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/genética , Telomerase/genética , Proteínas Virais/genética , Animais , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Cromossomos Artificiais Bacterianos/genética , Feminino , Glioblastoma/genética , Humanos , Camundongos , Mutação , Terapia Viral Oncolítica , Vírus Oncolíticos/fisiologia , Regiões Promotoras Genéticas , Células Vero , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Oncol Lett ; 21(6): 490, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33968206

RESUMO

Currently, gastric cancer is the third most common cause of cancer-associated mortality worldwide. Oncolytic virotherapy using herpes simplex virus (HSV) has emerged as a novel therapeutic strategy against cancer. Telomerase is activated in >90of malignant tumors, including gastric cancer, and human telomerase reverse transcriptase (hTERT) is one of the major components of telomerase enzyme. Therefore, in oncolytic HSV, placing the essential genes under the regulation of the hTERT promoter may enhance its antitumor efficacy. The present study examined the antitumor effect of fourth-generation oncolytic HSVs, which contain the ICP6 gene under the regulation of the hTERT promoter (T-hTERT). To examine the association between hTERT expression and prognosis in patients with gastric cancer, immunohistochemical analysis of resected tumor specimens was performed. The enhanced efficacy of T-hTERT was determined in human gastric cancer cell lines in vitro and in human gastric adenocarcinoma specimens in vivo. In in vitro experiments, enhanced cytotoxicity of T-hTERT was observed in MKN1, MKN28 and MKN45 cells compared with that of a third-generation oncolytic HSV, T-null. In particular, the cytotoxicity of T-hTERT was markedly enhanced in MKN45 cells. Furthermore, in vivo experiments demonstrated that 36.7 and 54.9% of cells were found to be lysed 48 h after infection with T-null or T-hTERT viruses at 0.01 pfu/cell, respectively. The T-hTERT-treated group exhibited considerably lower cell viability than the control [phosphate-buffered saline (-)] group. Therefore, employing oncolytic HSVs that contain the ICP6 gene under the regulation of the hTERT promoter may be an effective therapeutic strategy for gastric cancer. To the best of our knowledge, the present study was the first to describe the effect of an oncolytic HSV with ICP6 expression regulated by the hTERT promoter on gastric cancer cells.

19.
Oncotarget ; 12(4): 344-354, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33659045

RESUMO

Oncolytic virotherapy is an encouraging treatment using herpes simplex virus (HSV) for gastric cancer patients. To treat gastric cancer, we generated and evaluated the efficacy of an attractive type of oncolytic HSV expressing the suppressor of cytokine signaling 3 (SOCS3). We constructed a third-generation type of oncolytic HSV (T-SOCS3) arming with SOCS3 by a bacterial artificial chromosome (BAC) system. We examined the viral replicative intensification and oncolysis of T-SOCS3 for human gastric cancer cell lines ex vivo. T-SOCS3 enhanced its replication and potentiated its cell-killing effect for MKN1 human gastric cancer cell lines, which are resistant to a non-armed third-generation type of oncolytic HSV (T-01) ex vivo. T-SOCS3 also induced the destruction within human gastric cancer specimens. Armed oncolytic HSVs expressing SOCS3 may be an efficacious therapeutic agent for gastric cancer treatment.

20.
Oncogene ; 40(15): 2803-2815, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33727660

RESUMO

Glioblastoma (GBM) is the most malignant form of glioma. Glioma stem cells (GSCs) contribute to the initiation, progression, and recurrence of GBM as a result of their self-renewal potential and tumorigenicity. Cyclin-dependent kinase 8 (CDK8) belongs to the transcription-related CDK family. Although CDK8 has been shown to be implicated in the malignancy of several types of cancer, its functional role and mechanism in gliomagenesis remain largely unknown. Here, we demonstrate how CDK8 plays an essential role in maintaining stemness and tumorigenicity in GSCs. The genetic inhibition of CDK8 by shRNA or CRISPR interference resulted in an abrogation of the self-renewal potential and tumorigenicity of patient-derived GSCs, which could be significantly rescued by the ectopic expression of c-MYC, a stem cell transcription factor. Moreover, we demonstrated that the pharmacological inhibition of CDK8 significantly attenuated the self-renewal potential and tumorigenicity of GSCs. CDK8 expression was significantly higher in human GBM tissues than in normal brain tissues, and its expression was positively correlated with stem cell markers including c-MYC and SOX2 in human GBM specimens. Additionally, CDK8 expression is associated with poor survival in GBM patients. Collectively, these findings highlight the importance of the CDK8-c-MYC axis in maintaining stemness and tumorigenicity in GSCs; these findings also identify the CDK8-c-MYC axis as a potential target for GSC-directed therapy.


Assuntos
Neoplasias Encefálicas/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Quinase 8 Dependente de Ciclina/genética , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...