Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 7805, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385373

RESUMO

Transplantation of germ-free (GF) mice with microbiota from mice or humans stimulates the intestinal immune system in disparate ways. We transplanted a human microbiota into GF C57BL/6 mice and a murine C57BL/6 microbiota into GF C57BL/6 mice and Swiss-Webster (SW) mice. Mice were bred to produce an offspring generation. 56% of the Operational Taxonomic Units (OTUs) present in the human donor microbiota established in the recipient mice, whereas 81% of the C57BL/6 OTUs established in the recipient C57BL/6 and SW mice. Anti-inflammatory bacteria such as Faecalibacterium and Bifidobacterium from humans were not transferred to mice. Expression of immune-related intestinal genes was lower in human microbiota-mice and not different between parent and offspring generation. Expression of intestinal barrier-related genes was slightly higher in human microbiota-mice. Cytokines and chemokines measured in plasma were differentially present in human and mouse microbiota-mice. Minor differences in microbiota and gene expression were found between transplanted mice of different genetics. It is concluded that important immune-regulating bacteria are lost when transplanting microbiota from humans to C57BL/6 mice, and that the established human microbiota is a weak stimulator of the murine immune system. The results are important for study design considerations in microbiota transplantation studies involving immunological parameters.


Assuntos
Bactérias/imunologia , Microbioma Gastrointestinal/imunologia , Sistema Imunitário/microbiologia , Transplantes/microbiologia , Animais , Bifidobacterium , Colo/microbiologia , Microbioma Gastrointestinal/genética , Vida Livre de Germes/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL
2.
Sci Rep ; 7: 42245, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28169374

RESUMO

Germ-free rodents colonized with microbiotas of interest are used for host-microbiota investigations and for testing microbiota-targeted therapeutic candidates. Traditionally, isolators are used for housing such gnotobiotic rodents due to optimal protection from the environment, but research groups focused on the microbiome are increasingly combining or substituting isolator housing with individually ventilated cage (IVC) systems. We compared the effect of housing systems on the gut microbiota composition of germ-free mice colonized with a complex microbiota and housed in either multiple IVC cages in an IVC facility or in multiple open-top cages in an isolator during three generations and five months. No increase in bacterial diversity as assessed by 16S rRNA gene sequencing was observed in the IVC cages, despite not applying completely aseptic cage changes. The donor bacterial community was equally represented in both housing systems. Time-dependent clustering between generations was observed in both systems, but was strongest in the IVC cages. Different relative abundance of a Rikenellaceae genus contributed to separate clustering of the isolator and IVC communities. Our data suggest that complex microbiotas are protected in IVC systems, but challenges related to temporal dynamics should be addressed.


Assuntos
Microbioma Gastrointestinal , Vida Livre de Germes , Abrigo para Animais , Ventilação , Envelhecimento/fisiologia , Animais , Biodiversidade , Análise por Conglomerados , Contagem de Colônia Microbiana , Fezes/microbiologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Filogenia , Fatores de Tempo
3.
Gut Microbes ; 7(1): 68-74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26744774

RESUMO

We recently investigated the applicability of antibiotic-treated recipient mice for transfer of different gut microbiota profiles. With this addendum we elaborate on perspectives and limitations of using antibiotics as an alternative to germ-free (GF) technology in microbial transplantation studies, and we speculate on the housing effect. It is possible to transfer host phenotypes via fecal transplantation to antibiotic-treated animals, but problems with reproducibility, baseline values, and antibiotic resistance genes should be considered. GF animals maintained in isolators still seem to be the best controlled models for long-term microbial transplantation, but antibiotic-treated recipients are also commonly utilized. We identify a need for systematic experiments investigating the stability of microbial transplantations by addressing 1) the recipient status as either GF, antibiotic-treated or specific pathogen free and 2) different levels of protected housing systems. In addition, the developmental effect of microbes on host physiological functions should be evaluated in the different scenarios.


Assuntos
Antibacterianos/administração & dosagem , Transplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Organismos Livres de Patógenos Específicos , Animais , Camundongos , Modelos Animais , Reprodutibilidade dos Testes
4.
Lab Invest ; 94(9): 938-49, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25068658

RESUMO

Whereas a significant role for intestinal microbiota in affecting the pathogenesis and progression of chronic hepatic diseases is well documented, the contribution of the intestinal flora to acute liver injury has not been extensively addressed. Elucidating the influence of the intestinal microbiota on acute liver inflammation would be important for better understanding the transition from acute injury to chronic liver disease. Using the Concanavalin A (ConA)-induced liver injury model in laboratory mice, we show that the severity of acute hepatic damage varies greatly among genetically identical mice raised in different environments and harboring distinct microbiota. Through reconstitution of germ-free (GF) mice, and the co-housing of conventional mice, we provide direct evidence that manipulation of the intestinal flora alters susceptibility to ConA-induced liver injury. Through deep sequencing of the fecal microbiome, we observe that the relative abundance of Ruminococcaceae, a Gram(+) family within the class Clostridia, but distinct from segmented filamentous bacteria, is positively associated with the degree of liver damage. Searching for the underlying mechanism(s) that regulate susceptibility to ConA, we provide evidence that the extent of liver injury following triggering of the death receptor Fas varies greatly as a function of the microbiota. We demonstrate that the extent of Fas-induced liver injury increases in GF mice after microbiota reconstitution, and decreases in conventionally raised mice following reduction in intestinal bacterial load, by antibiotic treatment. We also show that the regulation of sensitivity to Fas-induced liver injury is dependent upon the toll-like receptor signaling molecule MyD88. In conclusion, the status and composition of the intestinal microbiota determine the susceptibility to ConA-induced acute liver injury. The microbiota acts as a rheostat, actively modulating the extent of liver damage in response to Fas triggering.


Assuntos
Hepatopatias/imunologia , Microbiota , Receptor fas/imunologia , Doença Aguda , Animais , Suscetibilidade a Doenças , Feminino , Citometria de Fluxo , Hepatopatias/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...