Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
SLAS Discov ; 25(5): 447-457, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32003306

RESUMO

Conventionally, manual patch-clamp electrophysiological approaches are the gold standard for studying ion channel function in neurons. However, these approaches are labor-intensive, yielding low-throughput results, and are therefore not amenable for compound profiling efforts during the early stages of drug discovery. The SyncroPatch 384PE has been successfully implemented for pharmacological experiments in heterologous overexpression systems that may not reproduce the function of voltage-gated ion channels in a native, heterogeneous environment. Here, we describe a protocol allowing the characterization of endogenous voltage-gated potassium (Kv) and sodium (Nav) channel function in developing primary rat cortical cultures, allowing investigations at a significantly improved throughput compared with manual approaches. Key neuronal marker expression and microelectrode array recordings of electrophysiological activity over time correlated well with neuronal maturation. Gene expression data revealed high molecular diversity in Kv and Nav subunit composition throughout development. Voltage-clamp experiments elicited three major current components composed of inward and outward conductances. Further pharmacological experiments confirmed the endogenous expression of functional Kv and Nav channels in primary cortical neurons. The major advantages of this approach compared with conventional manual patch-clamp systems include unprecedented improvements in experimental ease and throughput for ion channel research in primary neurons. These efforts demonstrated feasibility for primary neuronal ion channel investigation with the SyncroPatch, providing the foundation for future studies characterizing biophysical changes in endogenous ion channels in primary systems associated with disease or development.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Canais Iônicos/genética , Técnicas de Patch-Clamp , Animais , Córtex Cerebelar/citologia , Córtex Cerebelar/fisiologia , Eletrofisiologia , Regulação da Expressão Gênica , Humanos , Cultura Primária de Células , Ratos
2.
Int J Biochem Mol Biol ; 7(1): 11-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27335682

RESUMO

Human organic anion transporter 4 (hOAT4) belongs to a family of organic anion transporters which play critical roles in the body disposition of clinically important drugs. hOAT4 is expressed in the kidney and placenta. In the current study, we examined the inhibitory effects of 101 anticancer drugs from a clinical drug library on hOAT4 transport activity. The studies were carried out in hOAT4-expressing human kidney HEK-293 cells and human placenta BeWo cells. Among these drugs, only chlorambucil and cabazitaxel demonstrated more than 50% cis-inhibitory effect on hOAT4-mediated uptake of (3)H-labeled estrone sulfate, a prototypical substrate for the transporter. The IC50 values for chlorambucil and cabazitaxel were 44.28 and 3.5 µM respectively. Dixon plot analysis revealed that inhibition by chlorambucil was competitive with a Ki = 55.73 µM whereas inhibition by cabazitaxel was non-competitive with a Ki = 1.78 µM. Our results demonstrated that chlorambucil and cabazitaxel were inhibitors of hOAT4. Furthermore, by comparing our data with clinically relevant exposures of these drugs, we conclude that the propensity for chlorambucil and cabazitaxel to cause drug-drug interaction through inhibition of hOAT4 is low.

3.
Int J Biochem Mol Biol ; 7(1): 19-26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27335683

RESUMO

Human organic anion transporter 1 (hOAT1) belongs to a family of organic anion transporters that play critical roles in the body disposition of clinically important drugs, including anti-viral therapeutics, anti-cancer drugs, antibiotics, antihypertensives, and anti-inflammatories. hOAT1 is abundantly expressed in the kidney and brain. In the current study, we examined the regulation of hOAT1 by serum- and glucocorticoid-inducible kinase 2 (sgk2) in the kidney COS-7 cells. We showed that sgk2 stimulated hOAT1 transport activity. Such stimulation mainly resulted from an increased cell surface expression of the transporter, kinetically revealed as an increased maximal transport velocity V max without significant change in substrate-binding affinity K m. We further showed that stimulation of hOAT1 activity by sgk2 was achieved by preventing hOAT1 degradation. Our co-immunoprecipitation experiment revealed that the effect of sgk2 on hOAT1 was through a direct interaction between these two proteins. In conclusion, our study demonstrated that sgk2 stimulates hOAT1 transport activity by enhancing the stability of the transporter. This study provides the insights into sgk2 regulation of hOAT1-mediated transport in normal physiology and disease.

4.
Biochem Pharmacol ; 102: 120-129, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26740304

RESUMO

Human organic anion transporter 4 (hOAT4) belongs to a family of organic anion transporters that play critical roles in the body disposition of clinically important drugs, including anti-viral therapeutics, anti-cancer drugs, antibiotics, antihypertensives, and anti-inflammatories. hOAT4 is abundantly expressed in the kidney and placenta. In the current study, we examined the regulation of hOAT4 by serum- and glucocorticoid-inducible kinase 2 (sgk2) in the kidney COS-7 cells. We showed that sgk2 stimulated hOAT4 transport activity. Such stimulation mainly resulted from an increased cell surface expression of the transporter, kinetically revealed as an increased maximal transport velocity Vmax without significant change in substrate-binding affinity Km. We further showed that regulation of hOAT4 activity by sgk2 was mediated by ubiquitin ligase Nedd4-2. Overexpression of Nedd4-2 enhanced hOAT4 ubiquitination, and inhibited hOAT4 transport activity, whereas overexpression of ubiquitin ligase-dead mutant Nedd4-2/C821A or siRNA knockdown of endogenous Nedd4-2 had opposite effects on hOAT4. Our co-immunoprecipitation experiment revealed that sgk2 weakened the association between hOAT4 and Nedd4-2. In conclusion, our study demonstrated for the first time that sgk2 stimulated hOAT4 transport activity by abrogating the inhibitory effect of Nedd4-2 on the transporter.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas Imediatamente Precoces/fisiologia , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Humanos , Ubiquitina-Proteína Ligases Nedd4 , Transporte Proteico/fisiologia
5.
J Steroids Horm Sci ; 5(3): 136, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25844270

RESUMO

OBJECTIVE: Progesterone (P4) plays a central role in women's health. Synthetic progestins are used clinically in hormone replacement therapy (HRT), oral contraceptives, and for the treatment of endometriosis and infertility. Unfortunately, synthetic progestins are associated with side effects, including cardiovascular disease and breast cancer. Botanical dietary supplements are widely consumed for the alleviation of a variety of gynecological issues, but very few studies have characterized natural compounds in terms of their ability to bind to and activate progesterone receptors (PR). Kaempferol is a flavonoid that functions as a non-steroidal selective progesterone receptor modulator (SPRM) in vitro. This study investigated the molecular and physiological effects of kaempferol in the ovariectomized rat uteri. METHODS: Since genistein is a phytoestrogen that was previously demonstrated to increase uterine weight and proliferation, the ability of kaempferol to block genistein action in the uterus was investigated. Analyses of proliferation, steroid receptor expression, and induction of well-established PR-regulated targets Areg and Hand2 were completed using histological analysis and qPCR gene induction experiments. In addition, kaempferol in silico binding analysis was completed for PR. The activation of estrogen and androgen receptor signalling was determined in vitro. RESULTS: Molecular docking analysis confirmed that kaempferol adopts poses that are consistent with occupying the ligand-binding pocket of PRA. Kaempferol induced expression of PR regulated transcriptional targets in the ovariectomized rat uteri, including Hand2 and Areg. Consistent with progesterone-l ke activity, kaempferol attenuated genistein-induced uterine luminal epithelial proliferation without increasing uterine weight. Kaempferol signalled without down regulating PR expression in vitro and in vivo and without activating estrogen and androgen receptors. CONCLUSION: Taken together, these data suggest that kaempferol is a unique natural PR modulator that activates PR signaling in vitro and in vivo without triggering PR degradation.

6.
Fitoterapia ; 82(1): 67-70, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20837111

RESUMO

The biological mechanism of action for any botanical extract is a necessary part of discovery to determine pharmacological use and safety. Interestingly, many activities that are governed by endogenous compounds are not fully understood making the characterization of mechanisms elusive. For example, phytoestrogens are being consumed for menopausal symptoms while the biological action of estradiol are still being investigated. Therefore, long term efficacy and safety issues are a challenge in the field. As new activities are associated with new biological pathways, an important component of therapeutic discovery will need to be the re-evaluation of negative or less active natural products to determine their relative use as medicines.


Assuntos
Descoberta de Drogas , Estradiol/metabolismo , Menopausa , Fitoestrógenos , Fitoterapia , Extratos Vegetais/farmacologia , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...