Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804112

RESUMO

We develop a coupled-cluster full-dimensional global potential energy surface (PES) for the OH- + CH3CH2Cl reactive system, using the Robosurfer program package, which automatically samples configurations along PES-based trajectories as well as performs ab initio computations with Molpro and fitting with the monomial symmetrization approach. The analytical PES accurately describes both the bimolecular nucleophilic substitution (SN2) and elimination (E2) channels leading to the Cl- + CH3CH2OH and Cl- + H2O + C2H4 products, respectively, and allows efficient quasi-classical trajectory (QCT) simulations. QCT computations on the new PES provide accurate statistically-converged integral and differential cross sections for the OH- + CH3CH2Cl reaction, revealing the competing dynamics and mechanisms of the SN2 and E2 (anti, syn, ß-α transfer) channels as well as various additional pathways leading to induced inversion of the CH3CH2Cl reactant, H-exchange between the reactants, H2O⋯Cl- complex formation, and H2O + CH3CHCl- products via proton abstraction.

2.
Phys Chem Chem Phys ; 23(24): 13526-13534, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34132273

RESUMO

We provide the first benchmark characterization of the OH- + CH3CH2Y [Y = F, Cl, Br, I] reactions utilizing the high-level explicitly-correlated CCSD(T)-F12b method with the aug-cc-pVnZ [n = 2(D), 3(T), 4(Q)] basis sets. We explore and analyze the stationary points of the elimination (E2) and substitution (SN2) reactions, including anti-E2, syn-E2, back-side attack, front-side attack, and double inversion. In all cases, SN2 is thermodynamically more preferred than E2. In the entrance channel of SN2 a significant front-side complex formation is revealed, and in the product channel the global minimum of the title reactions is obtained at the hydrogen-bonded CH3CH2OHY- complex. Similar to the OH- + CH3Y reactions, double inversion can proceed via a notably lower-energy pathway than front-side attack, moreover, for Y = I double inversion becomes barrier-less. For the transition state of the anti-E2, a prominent ZPE effect emerges, giving an opportunity for a kinetically more favored pathway than back-side attack. In addition to SN2 and E2, other possible product channels are considered, and in most cases, the benchmark reaction enthalpies are in excellent agreement with the experimental data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...