Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 39(8): 110842, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35613598

RESUMO

The interactions between the striatal cholinergic and GABAergic systems are crucial in shaping reward-related behavior and reinforcement learning; however, the synaptic pathways mediating them are largely unknown. Here, we use Chrna2-Cre mice to characterize striatal interneurons (INs) expressing the nicotinic α2 receptor subunit. Using triple patch-clamp recordings combined with optogenetic stimulations, we characterize the electrophysiological, morphological, and synaptic properties of striatal Chrna2-INs. Striatal Chrna2-INs have diverse electrophysiological properties, distinct from their counterparts in other brain regions, including the hippocampus and neocortex. Unlike in other regions, most striatal Chrna2-INs are fast-spiking INs expressing parvalbumin. Striatal Chrna2-INs are intricately integrated in the striatal microcircuit, forming inhibitory synaptic connections with striatal projection neurons and INs, including other Chrna2-INs. They receive excitatory inputs from primary motor cortex mediated by both AMPA and NMDA receptors. A subpopulation of Chrna2-INs responds to nicotinic input, suggesting reciprocal interactions between this GABAergic interneuron population and striatal cholinergic synapses.


Assuntos
Receptores Nicotínicos , Animais , Colinérgicos/metabolismo , Corpo Estriado/metabolismo , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Camundongos , Camundongos Transgênicos , Optogenética , Receptores Nicotínicos/metabolismo
2.
Nat Commun ; 11(1): 5113, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037215

RESUMO

Striatal activity is dynamically modulated by acetylcholine and dopamine, both of which are essential for basal ganglia function. Synchronized pauses in the activity of striatal cholinergic interneurons (ChINs) are correlated with elevated activity of midbrain dopaminergic neurons, whereas synchronous firing of ChINs induces local release of dopamine. The mechanisms underlying ChIN synchronization and its interplay with dopamine release are not fully understood. Here we show that polysynaptic inhibition between ChINs is a robust network motif and instrumental in shaping the network activity of ChINs. Action potentials in ChINs evoke large inhibitory responses in multiple neighboring ChINs, strong enough to suppress their tonic activity. Using a combination of optogenetics and chemogenetics we show the involvement of striatal tyrosine hydroxylase-expressing interneurons in mediating this inhibition. Inhibition between ChINs is attenuated by dopaminergic midbrain afferents acting presynaptically on D2 receptors. Our results present a novel form of interaction between striatal dopamine and acetylcholine dynamics.


Assuntos
Neurônios Colinérgicos/metabolismo , Corpo Estriado/citologia , Interneurônios/metabolismo , Inibição Neural/fisiologia , Transmissão Sináptica/fisiologia , Acetilcolina/fisiologia , Animais , Condicionamento Clássico , Corpo Estriado/fisiologia , Dopamina , Feminino , Masculino , Mesencéfalo/citologia , Mesencéfalo/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Receptores de Dopamina D2/metabolismo , Recompensa
3.
Proc Natl Acad Sci U S A ; 117(17): 9554-9565, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32321828

RESUMO

The basal ganglia play an important role in decision making and selection of action primarily based on input from cortex, thalamus, and the dopamine system. Their main input structure, striatum, is central to this process. It consists of two types of projection neurons, together representing 95% of the neurons, and 5% of interneurons, among which are the cholinergic, fast-spiking, and low threshold-spiking subtypes. The membrane properties, soma-dendritic shape, and intrastriatal and extrastriatal synaptic interactions of these neurons are quite well described in the mouse, and therefore they can be simulated in sufficient detail to capture their intrinsic properties, as well as the connectivity. We focus on simulation at the striatal cellular/microcircuit level, in which the molecular/subcellular and systems levels meet. We present a nearly full-scale model of the mouse striatum using available data on synaptic connectivity, cellular morphology, and electrophysiological properties to create a microcircuit mimicking the real network. A striatal volume is populated with reconstructed neuronal morphologies with appropriate cell densities, and then we connect neurons together based on appositions between neurites as possible synapses and constrain them further with available connectivity data. Moreover, we simulate a subset of the striatum involving 10,000 neurons, with input from cortex, thalamus, and the dopamine system, as a proof of principle. Simulation at this biological scale should serve as an invaluable tool to understand the mode of operation of this complex structure. This platform will be updated with new data and expanded to simulate the entire striatum.


Assuntos
Simulação por Computador , Corpo Estriado/fisiologia , Fenômenos Eletrofisiológicos , Modelos Biológicos , Neurônios/fisiologia , Animais , Córtex Cerebral/fisiologia , Corpo Estriado/citologia , Dopamina/metabolismo , Camundongos , Receptores Dopaminérgicos/metabolismo , Tálamo/fisiologia
4.
Cell Rep ; 27(11): 3182-3198.e9, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31189104

RESUMO

Variations in the human FTO gene have been linked to obesity and altered connectivity of the dopaminergic neurocircuitry. Here, we report that fat mass and obesity-associated protein (FTO) in dopamine D2 receptor-expressing medium spiny neurons (D2 MSNs) of mice regulate the excitability of these cells and control their striatopallidal globus pallidus external (GPe) projections. Lack of FTO in D2 MSNs translates into increased locomotor activity to novelty, associated with altered timing behavior, without impairing the ability to control actions or affecting reward-driven and conditioned behavior. Pharmacological manipulations of dopamine D1 receptor (D1R)- or D2R-dependent pathways in these animals reveal altered responses to D1- and D2-MSN-mediated control of motor output. These findings reveal a critical role for FTO to control D2 MSN excitability, their projections to the GPe, and behavioral responses to novelty.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Neurônios Dopaminérgicos/metabolismo , Comportamento Exploratório , Locomoção , Potenciais de Ação , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Animais , Neurônios Dopaminérgicos/fisiologia , Feminino , Globo Pálido/citologia , Globo Pálido/metabolismo , Globo Pálido/fisiologia , Masculino , Camundongos , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Recompensa
5.
Nat Commun ; 9(1): 3691, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209249

RESUMO

Spiral ganglion (SG) neurons of the cochlea convey all auditory inputs to the brain, yet the cellular and molecular complexity necessary to decode the various acoustic features in the SG has remained unresolved. Using single-cell RNA sequencing, we identify four types of SG neurons, including three novel subclasses of type I neurons and the type II neurons, and provide a comprehensive genetic framework that define their potential synaptic communication patterns. The connectivity patterns of the three subclasses of type I neurons with inner hair cells and their electrophysiological profiles suggest that they represent the intensity-coding properties of auditory afferents. Moreover, neuron type specification is already established at birth, indicating a neuronal diversification process independent of neuronal activity. Thus, this work provides a transcriptional catalog of neuron types in the cochlea, which serves as a valuable resource for dissecting cell-type-specific functions of dedicated afferents in auditory perception and in hearing disorders.


Assuntos
Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/metabolismo , Neurônios Aferentes/citologia , Neurônios Aferentes/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Animais , Cóclea/citologia , Cóclea/metabolismo , Células Ciliadas Auditivas Internas/citologia , Células Ciliadas Auditivas Internas/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Gânglio Espiral da Cóclea/citologia , Gânglio Espiral da Cóclea/metabolismo , Potenciais Sinápticos/fisiologia
6.
Front Cell Neurosci ; 11: 127, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28515682

RESUMO

Corticotropin-releasing hormone (CRH)-synthesizing parvocellular neuroendocrine cells (PNCs) of the hypothalamic paraventricular nucleus (PVN) play a key role in the activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Several studies have demonstrated that synaptic inputs to these cells may undergo stress-related enhancement but, on the other hand, it has been reported that exposition to the same stressor for prolonged time periods may induce a progressive reduction in the response of the HPA axis to homotypic stressors. In the present study rats were subjected to 10 min restraint sessions, repeated twice daily for 3 or 7 days. Miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) were then recorded from PNCs in ex vivo hypothalamic slice preparations obtained 24 h after the last restraint. Restraint stress repeated over 3 days resulted in increased mean frequency and decreased rise time and decay time constant of mEPSCs, accompanied by a decrease in the excitability of PNCs, however, no such changes were evident in slices obtained from rats subjected to restraint over 7 days. There were no changes in mIPSCs after repeated restraint. Administration of the unspecific nitric oxide synthase (NOS) blocker Nω-Nitro-L-arginine (L-NNA) before each restraint, repeated over 3 days, prevented the occurrence of an increase in mEPSC frequency. However, animals receiving L-NNA and subjected to repeated restraint had similar changes in PNCs membrane excitability and mEPSC kinetics as stressed rats not receiving L-NNA. Comparison of the effects of a single 10 min restraint session followed by either an immediate or delayed (24 h) decapitation revealed an increase in the mean mEPSC frequency and a decrease in the mean mIPSC frequency in slices prepared immediately after restraint, with no apparent effects when slice preparation was delayed by 24 h. These results demonstrate that restraint, lasting 10 min and repeated twice daily for 3 days, induces a selective and long-lasting enhancement of excitatory synaptic input onto PNCs, partially by a NOS-dependent mechanism, and reduces PNC excitability, whereas prolongation of repeated stress for up to 7 days results in an adaptation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...