Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 42(15): 3028-3031, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957237

RESUMO

Photonic devices that can guide, transfer, or modulate light are highly desired in electronics and integrated silicon (Si) photonics. Here, we demonstrate for the first time, to the best of our knowledge, the creation of optical waveguides deep inside Si using femtosecond pulses at a central wavelength of 1.5 µm. To this end, we use 350 fs long, 2 µJ pulses with a repetition rate of 250 kHz from an Er-doped fiber laser, which we focused inside Si to create permanent modifications of the crystal. The position of the beam is accurately controlled with pump-probe imaging during fabrication. Waveguides that were 5.5 mm in length and 20 µm in diameter were created by scanning the focal position along the beam propagation axis. The fabricated waveguides were characterized with a continuous-wave laser operating at 1.5 µm. The refractive index change inside the waveguide was measured with optical shadowgraphy, yielding a value of 6×10-4, and by direct light coupling and far-field imaging, yielding a value of 3.5×10-4. The formation mechanism of the modification is discussed.

2.
J Phys Chem A ; 117(46): 12011-9, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23795961

RESUMO

Product imaging of O((3)P2) following dissociation of ozone has been used to determine the relative yields of the product channels O((3)P2) + O2(X (3)Σg(-)) of ozone. All three channels are prominent at all wavelengths investigated. O2 vibrational distributions for each channel and each wavelength are also estimated assuming Boltzmann rotational distributions. Averaged over wavelength in the measured range, the yields of the O((3)P2) + O2(X (3)Σg(-)), O((3)P2) + O2(a (1)Δg), and O((3)P2) + O2(b (1)Σg(+)) channels are 0.36, 0.31,and 0.34, respectively. Photofragment distributions in the spin-allowed channel O((3)P) + O2(X (3)Σg(-)) are compared with the results of quantum mechanical calculations on the vibronically coupled PESs of the singlet states B (optically bright) and R (repulsive). The experiments suggest that considerably more vibrational excitation and less rotational excitation occur than predicted by the quantum calculations. The rotational distributions, adjusted to fit the experimental images, suggest that the dissociation takes place from a more linear configuration than the Franck-Condon bending angle of 117°. The dissociation at most wavelengths results in a positive value of the anisotropy parameter, ß, both in the experiment and in the calculations. Calculations indicate that both nonadiabatic transitions and intersystem crossings substantially reduce ß below the nominal value of 2.

3.
J Phys Chem A ; 114(42): 11292-7, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20735039

RESUMO

The O((1)D) + N(2)O → 2NO(X (2)Π) reaction has been studied in a molecular beam experiment in which O(3) and N(2)O were coexpanded. The precursor O((1)D) was prepared by O(3) photodissociation at 266 nm, and the NO(X (2)Π) molecules born from the reaction as the O((1)D) recoiled out of the beam were detected by 1+1 REMPI over the 220-246 nm probe laser wavelength range. The resulting spectrum was simulated to extract rotational and vibrational distributions of the NO(X (2)Π) molecules. The product rotational distribution is found to be characterized by a constant rotational temperature of ≈4500 K for all observed bands, v = 0-9. An inverted vibrational distribution is observed. A consistent explanation of this and previous experimental results is possible if there are two channels for the reaction, one producing a nearly statistical vibrational distribution for low O((1)D)-N(2)O relative velocity collisions and a second producing the inverted distribution observed here for high relative velocity collisions. The former might correspond to an insertion/complex-formation reaction, while the latter might correspond to a stripping reaction. Velocity relaxation of the O((1)D) is argued to compete strongly with reaction in most bulb studies, so that these studies see predominantly the nearly statistical distribution. In contrast, the beam experiments do not detect the part of the vibrational distribution produced in low relative velocity reactions because the O((1)D) is not relaxed from its initial velocity before it either reacts or leaves the beam.

4.
J Chem Phys ; 122(17): 174304, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15910029

RESUMO

The photodissociation of N(2)O at wavelengths near 130 nm has been investigated by velocity-mapped product imaging. In all, five dissociation channels have been detected, leading to the following products: O((1)S)+N(2)(X (1)Sigma), N((2)D)+NO(X (2)Pi), N((2)P)+NO(X (2)Pi), O((3)P) + N(2)(A (3)Sigma(+) (u)), and O((3)P) + N(2)(B (3)Pi(g)). The most significant channel is to the products O((1)S) + N(2)(X(1)Sigma), with strong vibrational excitation in the N(2). The O((3)P) + N(2)(A,B):N((2)D,(2)P) + NO branching ratio is measured to be 1.4 +/- 0.5, while the N(2)(A) + O((3)P(J)):N(2)(B) + O((3)P(J)) branching ratio is determined to be 0.84+/-0.09. The spin-orbit distributions for the O((3)P(J)), N((2)P(J)), and N((2)D(J)) products were also determined. The angular distributions of the products are in qualitative agreement with excitation to the N(2)O(D (1)Sigma(+)) state, with participation as well by the (3)Pi(v) state.


Assuntos
Modelos Químicos , Modelos Moleculares , Óxido Nítrico/química , Nitrogênio/química , Oxigênio/química , Fotoquímica/métodos , Simulação por Computador , Relação Dose-Resposta à Radiação , Cinética , Luz , Óxido Nítrico/efeitos da radiação , Nitrogênio/efeitos da radiação , Oxigênio/efeitos da radiação , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...