Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 295(14): 4591-4603, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32107308

RESUMO

As a branch of the unfolded protein response, protein kinase R-like endoplasmic reticulum kinase (PERK) represses global translation in response to endoplasmic reticulum (ER) stress. This pathophysiological condition is associated with the tumor microenvironment in cancer. Previous findings in our lab have suggested that PERK selectively represses translation of some mRNAs, but this possibility awaits additional investigation. In this study, we show that a stem-cell marker protein, leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), is rapidly depleted in colon cancer cells during ER stress, an effect that depended on the PERK-mediated translational repression. Indeed, the PERK inhibition led to the accumulation of premature, underglycosylated forms of LGR5, which were produced only at low levels during proper PERK activation. Unlike the mature LGR5 form, which is constitutively degraded regardless of PERK activation, the underglycosylated LGR5 exhibited a prolonged half-life and accumulated inside the cells without being expressed on the cell surface. We also found that Erb-B2 receptor tyrosine kinase 3 (ERBB3) is subjected to a similarly-regulated depletion by PERK, whereas the epidermal growth factor receptor (EGFR), stress-inducible heat-shock protein family A (Hsp70) member 5 (HSPA5), and anterior gradient 2 protein-disulfide isomerase family member (AGR2) were relatively. insensitive to the PERK-mediated repression of translation. These results indicate that LGR5 and ERBB3 are targets for PERK-mediated translational repression during ER stress.


Assuntos
Estresse do Retículo Endoplasmático , Receptor ErbB-3/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , eIF-2 Quinase/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Linhagem Celular Tumoral , Desoxiglucose/farmacologia , Regulação para Baixo/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glicosilação , Meia-Vida , Proteínas de Choque Térmico/metabolismo , Humanos , Indóis/farmacologia , Mucoproteínas/metabolismo , Proteínas Oncogênicas/metabolismo , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/genética , Resposta a Proteínas não Dobradas , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/genética
2.
J Theor Biol ; 419: 269-277, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28237394

RESUMO

The developmental program of the heart requires accurate regulation to ensure continuous circulation and simultaneous cardiac morphogenesis, because any functional abnormalities may progress to congenital heart malformation. Notably, energy metabolism in fetal ventricular cells is regulated in a manner that differs from adult ventricular cells: fetal cardiomyocytes generally have immature mitochondria and fetal ventricular cells show greater dependence on glycolytic ATP production. However, although various characteristics of energy metabolism in fetal ventricular cells have been reported, to our knowledge, a quantitative description of the contributions of these factors to fetal ventricular cell functions has not yet been established. Here, we constructed a mathematical model to integrate various characteristics of fetal ventricular cells and predicted the contribution of each characteristic to the maintenance of intracellular ATP concentration and sarcomere contraction under anoxic conditions. Our simulation results demonstrated that higher glycogen content, higher hexokinase activity, and lower creatine concentration helped prolong the time for which ventricular cell contraction was maintained under anoxic conditions. The integrated model also enabled us to quantitatively assess the contributions of factors related to energy metabolism in ventricular cells. Because fetal cardiomyocytes exhibit similar energy metabolic profiles to stem cell-derived cardiomyocytes and those in the failing heart, an improved understanding of these fetal ventricular cells will contribute to a better comprehension of the processes in stem cell-derived cardiomyocytes or under pathological conditions.


Assuntos
Trifosfato de Adenosina/biossíntese , Glicólise , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa , Potenciais de Ação , Animais , Simulação por Computador , Metabolismo Energético , Coração Fetal/citologia , Coração Fetal/metabolismo , Coração Fetal/fisiologia , Hipóxia Fetal , Glicogênio/metabolismo , Cobaias , Ventrículos do Coração/citologia , Ventrículos do Coração/embriologia , Ventrículos do Coração/metabolismo , Hexoquinase/metabolismo , Modelos Cardiovasculares , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Sarcômeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...