Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Cureus ; 16(2): e53691, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38455832

RESUMO

Since subarachnoid hemorrhage (SAH) due to the re-rupture of cerebral aneurysms severely worsens the prognosis, an accurate initial diagnosis is essential. Computed tomography (CT) and magnetic resonance imaging (MRI) usually detect aneurysmal subarachnoid hemorrhage (aSAH). However, in rare cases, its identification on CT- and MRI scans is difficult, and a cerebrospinal fluid (CSF) examination is required. We present preoperative imaging and intraoperative findings in patients whose aSAH detection necessitated a CSF examination. Of 225 aSAH patients who underwent preoperative imaging studies at our institution between April 2010 and August 2019, 3 females (1.3%, mean age 57.3 years) harbored undetectable aSAH due to the rupture of an internal carotid artery-posterior communicating artery (ICA-PcomA) aneurysm. The aneurysmal orientation was inferolateral. Intraoperatively, the anterior petroclinoid ligament hampered the detection of the aneurysms that firmly adhered to the surrounding arachnoid membrane. Sustained arterial pulsation and successive minor hemorrhage can lead to the gradual adhesion of an ICA-PcomA aneurysm to the surrounding arachnoid membrane and explain their atypical rupture undetectable on imaging studies and the development of acute subdural hematoma without SAH.

2.
Cureus ; 16(2): e54321, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38496196

RESUMO

The usefulness of carotid endarterectomy (CEA) for carotid artery stenosis has been established even in the era of endovascular treatment. Digital subtraction angiography (DSA) and three-dimensional computed tomography angiography (3D-CTA) are used for preoperative evaluation of CEA; however, contrast agents cannot be used in patients with renal dysfunction or contrast agent allergy. Since the introduction of a three-dimensional image analysis software, SYNAPSE VINCENT (Fujifilm, Tokyo, Japan) in February 2016, we initially fused cervical CT, carotid three-dimensional time-of-flight magnetic resonance angiography, and carotid plaque imaging using 1.5 T magnetic resonance imaging to evaluate carotid artery stenosis in patients with renal dysfunction. Since then, we have gradually accumulated several cases, and at present, this fusion imaging is our first choice for preoperative evaluation of CEA instead of DSA or 3D-CTA. This evaluation method has many advantages over DSA and 3D-CTA, including the fact that it does not require contrast media. We report its usefulness, limitations, and cautions.

3.
J Biochem ; 175(4): 427-437, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38156779

RESUMO

The envelope of Escherichia coli contains approximately 100 different species of lipoproteins, most of which are localized to the inner leaflet of the outer membrane. The localization of lipoprotein (Lol) system, consisting of five Lol proteins, is responsible for the trafficking of lipoproteins to the outer membrane. LolCDE binds to lipoproteins destined for the outer membrane and transfers them to the periplasmic chaperone LolA. Although the cryo-EM structures of E. coli LolCDE have been reported, the mechanisms by which outer membrane lipoproteins are transferred to LolA remain elusive. In this study, we investigated the interaction between LolCDE and lipoproteins using site-specific photo-crosslinking. We introduced a photo-crosslinkable amino acid into different locations across the four helices which form the central lipoprotein-binding cavity, and identified domains that crosslink with peptidoglycan-associated lipoprotein (Pal) in vivo. Using one of the derivatives containing the photo-crosslinkable amino acid, we developed an in vitro system to analyze the binding of lipoproteins to LolCDE. Our results indicate that compound 2, a LolCDE inhibitor, does not inhibit the binding of lipoproteins to LolCDE, but rather promotes the dissociation of bound lipoproteins from LolCDE.


Assuntos
Proteínas de Escherichia coli , Proteínas Periplásmicas de Ligação , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Membrana Celular/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Aminoácidos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo
4.
Surg Neurol Int ; 11: 353, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194286

RESUMO

BACKGROUND: Although it is well known that internal carotid-posterior communicating artery (ICA-PcomA) aneurysms compress the oculomotor nerve and cause nerve palsy, cases of ICA-PcomA aneurysms splitting the oculomotor nerve are extremely rare. CASE DESCRIPTION: We present the rare case of an asymptomatic, growing, left-sided ICA-PcomA aneurysm that was confirmed to split the oculomotor nerve. We report the clinical course and discuss the underlying mechanism. The oculomotor nerve, which is an aggregate of multiple fibers, exhibits age-related loss of compactness in the arrangement of its nerve fibers. CONCLUSION: We speculate that injury to the nerve fibers by aneurysmal compression was avoided because of the rare phenomenon of splitting of the oculomotor nerve.

5.
J Stroke Cerebrovasc Dis ; 28(7): 1943-1950, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30981583

RESUMO

BACKGROUND: Although many studies evaluated independent prognosis factors of functional outcome in patients with subarachnoid hemorrhage (SAH) at a suitable time point, some patients take a long time to get functional improvement. The purpose of this study is to evaluate predictors for functional outcome in SAH patients who underwent surgical clipping and in-hospital rehabilitation in our single institution using Modified Rankin Scale (MRS) and Barthel Index (BI). METHODS: Two-hundred fifty-one SAH patients were admitted to our hospital from January 2008 to December 2017. Of them, 144 patients who diagnosed aneurysmal SAH, underwent surgical clipping within 72 hours, and completed subsequent in-hospital rehabilitation were included in this study. We explored their clinical variables and evaluated the relationships between those factors and functional outcome using MRS and BI. RESULTS: In multivariate analysis, independent prognostic factors of both MRS and BI were age, World Federation of Neurologic Surgeons grade, and symptomatic vasospasm. CONCLUSIONS: We suggest that age, SAH severity, and symptomatic vasospasm are associated with functional outcome in patients with aneurysmal SAH who completed surgical clipping and in-hospital rehabilitation.


Assuntos
Procedimentos Neurocirúrgicos/reabilitação , Hemorragia Subaracnóidea/reabilitação , Vasoespasmo Intracraniano/reabilitação , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Angiografia Cerebral/métodos , Angiografia por Tomografia Computadorizada , Imagem de Difusão por Ressonância Magnética , Avaliação da Deficiência , Feminino , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Procedimentos Neurocirúrgicos/efeitos adversos , Recuperação de Função Fisiológica , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/diagnóstico , Hemorragia Subaracnóidea/fisiopatologia , Fatores de Tempo , Resultado do Tratamento , Vasoespasmo Intracraniano/diagnóstico , Vasoespasmo Intracraniano/etiologia , Vasoespasmo Intracraniano/fisiopatologia
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(11): 1414-1423, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27871940

RESUMO

Bacterial lipoproteins are a subset of membrane proteins localized on either leaflet of the lipid bilayer. These proteins are anchored to membranes through their N-terminal lipid moiety attached to a conserved Cys. Since the protein moiety of most lipoproteins is hydrophilic, they are expected to play various roles in a hydrophilic environment outside the cytoplasmic membrane. Gram-negative bacteria such as Escherichia coli possess an outer membrane, to which most lipoproteins are sorted. The Lol pathway plays a central role in the sorting of lipoproteins to the outer membrane after lipoprotein precursors are processed to mature forms in the cytoplasmic membrane. Most lipoproteins are anchored to the inner leaflet of the outer membrane with their protein moiety in the periplasm. However, recent studies indicated that some lipoproteins further undergo topology change in the outer membrane, and play critical roles in the biogenesis and quality control of the outer membrane. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.


Assuntos
Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/biossíntese , Membrana Celular/metabolismo , Lipoproteínas/biossíntese , Proteínas da Membrana Bacteriana Externa/química , Interações Hidrofóbicas e Hidrofílicas , Lipoproteínas/química , Modelos Moleculares , Conformação Proteica , Transporte Proteico , Relação Estrutura-Atividade
7.
Genes Cells ; 21(12): 1353-1364, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27813233

RESUMO

Presecretory proteins such as pOmpA are translocated across the inner membrane of Escherichia coli by Sec translocase powered by ATP and proton motive force (PMF). Translocation activity has been determined by protease protection assaying in vitro. We identified a new translocation intermediate at a late stage, which was protected by proteinase K (PK), but became PK sensitive upon urea extraction. At a late stage of pOmpA translocation driven by PMF in the presence of a nonhydrolyzable ATP analogue, the PK-protected materials arose, but were pulled back upon urea extraction, indicating that completion of translocation requires ATP hydrolysis. When inverted membrane vesicles prepared from secG-null strain (ΔSecG IMV) were used in the absence of PMF, the translocation intermediate was accumulated. When the ATP concentration was low in the absence of PMF, the translocation intermediate was also accumulated. Imposition of PMF in the presence of a low ATP concentration caused recovery of pOmpA translocation and resistance to urea extraction for SecG+ IMV, but not for ΔSecG IMV. Thus, analysis of the late translocation intermediate showed that two of three constituents, physiological concentration of ATP, PMF and SecG, are required for the catalytic cycle of preprotein translocation, that is, completion and subsequent initiation of translocation.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Precursores de Proteínas/metabolismo , Transporte Proteico , Força Próton-Motriz , Canais de Translocação SEC/metabolismo , Catálise , Escherichia coli/metabolismo , Ureia/metabolismo
8.
Microbiol Immunol ; 60(9): 609-16, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27554301

RESUMO

Human noroviruses (NoVs) are a major cause of epidemic and sporadic acute gastroenteritis worldwide. Public and personal hygiene is one of the most important countermeasures for preventing spread of NoV infection. However, no a practicable cell culture system for NoV had been developed, initial tests of the virucidal effectiveness of anti-NoV disinfectants and sanitizers have been performed using surrogate viruses. In this study, NoV virus-like particles (VLPs) were used as a new surrogate for NoVs and a method for evaluating NoV inactivation using them developed. This method is based on morphological changes in VLPs after treatment with sodium hypochlorite. VLP specimens were found to become deformed and degraded in a concentration-dependent manner. Based on these results, the effects of sodium hypochlorite on VLPs were classified into four phases according to morphological changes and number of particles. Using the criteria thus established, the efficacy of ethanol, carbonates and alkali solutions against VLPs was evaluated. Deformation and aggregation of VLPs were observed after treatment with these disinfectants under specific conditions. To determine the degradation mechanism(s), VLPs were examined by SDS-PAGE and immunoblotting after treatment with sodium hypochlorite and ethanol. The band corresponding to the major capsid protein, VP1, was not detected after treatment with sodium hypochlorite at concentrations greater than 500 ppm, but remained after treatment with ethanol. These results suggest that VLPs have excellent potential as a surrogate marker for NoVs and can be used in initial virucidal effectiveness tests to determine the mechanism(s) of chemical agents on NoVs.


Assuntos
Desinfetantes/farmacologia , Norovirus/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos , Aglutinação/efeitos dos fármacos , Capsídeo/efeitos dos fármacos , Capsídeo/ultraestrutura , Proteínas do Capsídeo/metabolismo , Etanol/farmacologia , Humanos , Norovirus/ultraestrutura , Hipoclorito de Sódio/farmacologia
9.
J Bacteriol ; 197(10): 1726-34, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25733621

RESUMO

UNLABELLED: A high-throughput phenotypic screen based on a Citrobacter freundii AmpC reporter expressed in Escherichia coli was executed to discover novel inhibitors of bacterial cell wall synthesis, an attractive, well-validated target for antibiotic intervention. Here we describe the discovery and characterization of sulfonyl piperazine and pyrazole compounds, each with novel mechanisms of action. E. coli mutants resistant to these compounds display no cross-resistance to antibiotics of other classes. Resistance to the sulfonyl piperazine maps to LpxH, which catalyzes the fourth step in the synthesis of lipid A, the outer membrane anchor of lipopolysaccharide (LPS). To our knowledge, this compound is the first reported inhibitor of LpxH. Resistance to the pyrazole compound mapped to mutations in either LolC or LolE, components of the essential LolCDE transporter complex, which is required for trafficking of lipoproteins to the outer membrane. Biochemical experiments with E. coli spheroplasts showed that the pyrazole compound is capable of inhibiting the release of lipoproteins from the inner membrane. Both of these compounds have significant promise as chemical probes to further interrogate the potential of these novel cell wall components for antimicrobial therapy. IMPORTANCE: The prevalence of antibacterial resistance, particularly among Gram-negative organisms, signals a need for novel antibacterial agents. A phenotypic screen using AmpC as a sensor for compounds that inhibit processes involved in Gram-negative envelope biogenesis led to the identification of two novel inhibitors with unique mechanisms of action targeting Escherichia coli outer membrane biogenesis. One compound inhibits the transport system for lipoprotein transport to the outer membrane, while the other compound inhibits synthesis of lipopolysaccharide. These results indicate that it is still possible to uncover new compounds with intrinsic antibacterial activity that inhibit novel targets related to the cell envelope, suggesting that the Gram-negative cell envelope still has untapped potential for therapeutic intervention.


Assuntos
Antibacterianos/isolamento & purificação , Parede Celular/efeitos dos fármacos , Citrobacter freundii/enzimologia , Escherichia coli/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Piperazinas/isolamento & purificação , Pirazóis/isolamento & purificação , Antibacterianos/farmacologia , Parede Celular/genética , Citrobacter freundii/genética , Farmacorresistência Bacteriana , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Escherichia coli/genética , Expressão Gênica , Genes Reporter , Piperazinas/farmacologia , Pirazóis/farmacologia
10.
J Bacteriol ; 197(6): 1075-82, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25583975

RESUMO

In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/metabolismo , Imidazóis/farmacologia , Lipoproteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , Antibacterianos/química , Antifúngicos/química , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Bactérias Gram-Negativas/genética , Imidazóis/química , Estrutura Molecular , Mutação , Fenótipo
11.
J Biol Chem ; 289(15): 10530-10539, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24569999

RESUMO

The Lol system comprising five Lol proteins, LolA through LolE, sorts Escherichia coli lipoproteins to outer membranes. The LolCDE complex, an ATP binding cassette transporter in inner membranes, releases outer membrane-specific lipoproteins in an ATP-dependent manner, causing formation of the LolA-lipoprotein complex in the periplasm. LolA transports lipoproteins through the periplasm to LolB on outer membranes. LolB is itself a lipoprotein anchored to outer membranes, although the membrane anchor is functionally dispensable. LolB then localizes lipoproteins to outer membranes through largely unknown mechanisms. The crystal structure of LolB is similar to that of LolA, and it possesses a hydrophobic cavity that accommodates acyl chains of lipoproteins. To elucidate the molecular function of LolB, a periplasmic version of LolB, mLolB, was mutagenized at various conserved residues. Despite the lack of acyl chains, most defective mutants were insoluble. However, a derivative with glutamate in place of leucine 68 was soluble and unable to localize lipoproteins to outer membranes. This leucine is present in a loop protruding from mLolB into an aqueous environment, and no analogous loop is present in LolA. Thus, leucine 68 was replaced with other residues. Replacement by acidic, but not hydrophobic, residues generated for the first time mLolB derivatives that can accept but cannot localize lipoproteins to outer membranes. Moreover, deletion of the leucine with neighboring residues impaired the lipoprotein receptor activity. Based on these observations, the roles of the protruding loop of LolB in the last step of lipoprotein sorting are discussed.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Sequência de Aminoácidos , Membrana Celular/metabolismo , Cristalografia por Raios X , Teste de Complementação Genética , Ácido Glutâmico/metabolismo , Leucina/metabolismo , Lipoproteínas/metabolismo , Chaperonas Moleculares , Dados de Sequência Molecular , Mutagênese , Mutação , Periplasma/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Plasmídeos/metabolismo , Homologia de Sequência de Aminoácidos , Temperatura
12.
Proc Natl Acad Sci U S A ; 110(24): 9734-9, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23716687

RESUMO

Presecretory proteins are translocated across biological membranes through protein-conducting channels such as Sec61 (eukaryotes) and SecYEG (bacteria). SecA, a translocation ATPase, pushes preproteins out with dynamic structural changes through SecYEG. SecG, a subunit of the SecYEG channel possessing two transmembrane stretches (TMs), undergoes topology inversion coupled with SecA-dependent translocation. Recently, we characterized membrane protein integrase (MPIase), a glycolipozyme involved in not only protein integration into membranes but also preprotein translocation. We report here that SecG inversion occurs only when MPIase associates with SecYEG. We also found that MPIase modulates the dimer orientation of SecYEG. Cysteine-scanning mutagenesis mapped SecG TM 2 to a relatively hydrophilic environment. The dimer formation of SecG, crosslinked at TM 2, was not observed on SecG inversion, indicating that SecYEG undergoes a dynamic structural change during preprotein translocation.


Assuntos
Proteínas de Escherichia coli/metabolismo , Integrases/metabolismo , Proteínas de Membrana/metabolismo , Precursores de Proteínas/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Immunoblotting , Integrases/química , Integrases/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Mutação , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Canais de Translocação SEC
13.
Microbes Environ ; 28(1): 87-95, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23207727

RESUMO

A comprehensive survey of microbial flora within pink biofilms in bathrooms was performed. Pink biofilms develop relatively rapidly in bathrooms, can be difficult to remove, and are quick to recur. Bacterium-sized cells were found to be predominant in 42 pink biofilms in Japan using a scanning electron microscope. Methylobacterium strains were detected from all samples in bathrooms by an isolation method. To explain this predominance, 14 biofilm samples were analyzed by fluorescence in situ hybridization. Methylobacterium was indicated to be the major genus in all biofilms. The isolated Methylobacterium survived after contact with 1.0% cleaning agents, including benzalkonium chloride for 24 h. Their tolerance did not differ under biofilm-like conditions on fiber reinforced plastics (FRP), a general material of bath tubs, floors, and walls. Also, the strains exhibited higher tolerance to desiccation than other isolated species on FRP. Some Methylobacterium survived and exhibited potential to grow after four weeks of desiccation without any nutrients. These specific characteristics could be a cause of their predominance in bathrooms, an environment with rapid flowing water, drying, low nutrients, and occasional exposure to cleaning agents.


Assuntos
Biofilmes/crescimento & desenvolvimento , Dessecação , Detergentes/farmacologia , Resposta ao Choque Térmico , Methylobacterium/crescimento & desenvolvimento , Methylobacterium/genética , Tensoativos/farmacologia , Compostos de Benzalcônio/farmacologia , Biofilmes/efeitos dos fármacos , DNA Bacteriano/análise , DNA Bacteriano/genética , Japão , Methylobacterium/classificação , Methylobacterium/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Dodecilsulfato de Sódio/farmacologia
14.
FEBS Lett ; 587(1): 23-9, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23187171

RESUMO

A photo-sensitive amino acid analogue was introduced into an outer membrane lipoprotein, Pal, and then subjected to photo-crosslinking with the lipoprotein-specific ABC transporter LolCDE. Pal crosslinked to LolE but not LolC in vivo despite that both are structurally similar membrane subunits. LolCDE liganded with Pal containing the photo-sensitive amino acid analogue was isolated and subjected to in vitro photo-crosslinking. LolE was found to be the binding site for Pal. ATP binding to LolD decreased the LolE-Pal crosslinking by decreasing their hydrophobic interaction. ATP hydrolysis in the presence of LolA completely abolished the LolE-Pal crosslinking and, concomitantly, generated a new LolA-Pal crosslinked product.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Complexos Multiproteicos/metabolismo , Subunidades Proteicas/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/isolamento & purificação , Trifosfato de Adenosina/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Benzofenonas/química , Western Blotting , Cromatografia de Afinidade , Códon de Terminação , Reagentes de Ligações Cruzadas/química , Eletroforese em Gel de Poliacrilamida , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/isolamento & purificação , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fenilalanina/análogos & derivados , Fenilalanina/química , Processos Fotoquímicos , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
15.
Nat Commun ; 3: 1260, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23232390

RESUMO

Protein integration into biological membranes is a vital cellular event for all organisms. We previously reported an integration factor in the inner membrane of Escherichia coli, named MPIase (membrane protein integrase). Here we show that in contrast to previously identified integration factors that are proteins, MPIase is a glycolipid composed of diacylglycerol and a glycan chain of three acetylated aminosugars linked through pyrophosphate. Hydrolytic removal of the lipid moiety gives a soluble product with higher integration activity than that of the original MPIase. This soluble form of MPIase directly interacts with a newborn membrane protein, maintaining its integration-competent structure and allowing its post-translational integration. MPIase actively drives protein integration following chaperoning membrane proteins. We further demonstrate with anti-MPIase antibodies that MPIase is likely involved in integration in vivo. Collectively, our results suggest that MPIase, essential for membrane protein integration, is to our knowledge the first glycolipid with an enzyme-like activity.


Assuntos
Escherichia coli/enzimologia , Glicolipídeos/fisiologia , Proteínas de Membrana/metabolismo , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Glicolipídeos/química , Glicolipídeos/metabolismo , Proteínas de Membrana/fisiologia , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade
16.
J Bacteriol ; 194(14): 3643-50, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22563052

RESUMO

The Escherichia coli LolA protein is a lipoprotein-specific chaperone that carries lipoproteins from the inner to the outer membrane. A dominant negative LolA mutant, LolA(I93C/F140C), in which both (93)Ile and (140)Phe are replaced by Cys, binds tightly to the lipoprotein-dedicated ABC transporter LolCDE complex on the inner membrane and therefore inhibits the detachment of outer membrane-specific lipoproteins from the inner membrane. We found that the expression of this mutant strongly induced lolA gene transcription. The depletion of the LolA or LolB protein also triggered lolA gene transcription, indicating that the inhibition of outer membrane lipoprotein transport triggers lolA transcription. To elucidate the mechanism, we isolated mutants that are unable to induce lolA transcription using the lacZ gene fused to the lolA promoter as a reporter and found that the Rcs phosphorelay system directly regulates lolA transcription. An outer membrane lipoprotein, RcsF, was essential for this activation, while the coactivator RcsA was dispensable. Taking the observation that an RcsF mutant localized in the inner membrane constitutively activated the Rcs phosphorelay system into consideration, the results shown here strongly suggest that correct lipoprotein sorting to the outer membrane is monitored by RcsF, which plays a key role in the Rcs stress response system.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Lipoproteínas/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Estresse Fisiológico/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Escherichia coli/genética , Mutação , Proteínas Periplásmicas de Ligação/genética , Fatores de Transcrição/genética
17.
J Biol Chem ; 287(1): 455-464, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22074917

RESUMO

SecA is a translocation ATPase that drives protein translocation. D209N SecA, a dominant-negative mutant, binds ATP but is unable to hydrolyze it. This mutant was inactive to proOmpA translocation. However, it generated a translocation intermediate of 18 kDa. Further addition of wild-type SecA caused its translocation into either mature OmpA or another intermediate of 28 kDa that can be translocated into mature by a proton motive force. The addition of excess D209N SecA during translocation caused a topology inversion of SecG. Moreover, an intermediate of SecG inversion was identified when wild-type and D209N SecA were used in the same amounts. These results indicate that multiple SecA molecules drive translocation across a single translocon with SecG inversion. Here, we propose a revised model of proOmpA translocation in which a single catalytic cycle of SecA causes translocation of 10-13 kDa with ATP binding and hydrolysis, and SecG inversion is required when the next SecA cycle begins with additional ATP hydrolysis.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli/metabolismo , Hidrólise , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Mutação , Precursores de Proteínas/metabolismo , Estabilidade Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA
18.
J Bacteriol ; 193(18): 4832-40, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21742870

RESUMO

Bacterial lipoproteins represent a subset of membrane-associated proteins that are covalently modified with lipids at the N-terminal cysteine. The final step of lipoprotein modification, N-acylation of apolipoproteins, is mediated by apolipoprotein N-acyltransferase (Lnt). Examinations with reconstituted proteoliposomes and a conditional mutant previously indicated that N-acylation of lipoproteins is required for their efficient release from the inner membrane catalyzed by LolA and LolCDE, the lipoprotein-specific chaperone and ABC transporter, respectively. Because Lnt is essential for Escherichia coli, a mutant lacking Lnt activity has not been isolated. However, we report here that lnt-null strains can be constructed when LolCDE is overproduced in strains lacking either the major outer membrane lipoprotein Lpp or transpeptidases that cross-link Lpp with peptidoglycan. Lipoproteins purified from the lnt-null strain exhibited increased mobility on SDS-PAGE compared to those from wild-type cells and could be sequenced by Edman degradation, indicating that lipoproteins in this mutant exist as apolipoproteins that lack N-acylation. Overexpression of Lpp in the lnt-null strain resulted in the accumulation of apoLpp in the inner membrane and caused growth arrest. In contrast to the release of mature Lpp in the presence of LolA and LolCDE, that of apoLpp from the inner membrane was significantly retarded. Furthermore, the amount of lipoproteins copurified with LolCDE was significantly reduced in the lnt-null strain. These results indicate that the affinity of LolCDE for apolipoprotein is very low, and therefore, overexpression of LolCDE is required for its release and sorting to the outer membrane.


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Aciltransferases/metabolismo , Proteínas de Escherichia coli/biossíntese , Escherichia coli/metabolismo , Deleção de Genes , Expressão Gênica , Transportadores de Cassetes de Ligação de ATP/genética , Aciltransferases/deficiência , Eletroforese em Gel de Poliacrilamida , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/genética , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/genética , Lipoproteínas/análise
19.
Annu Rev Microbiol ; 65: 239-59, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21663440

RESUMO

Bacterial lipoproteins are synthesized as precursors in the cytoplasm and processed into mature forms on the cytoplasmic membrane. A lipid moiety attached to the N terminus anchors these proteins to the membrane surface. Many bacteria are predicted to express more than 100 lipoproteins, which play diverse functions on the cell surface. The Lol system, composed of five proteins, catalyzes the localization of Escherichia coli lipoproteins to the outer membrane. Some lipoproteins play vital roles in the sorting of other lipoproteins, lipopolysaccharides, and ß-barrel proteins to the outer membrane. On the basis of results from biochemical, genetic, and structural studies, we discuss the biogenesis of lipoproteins in bacteria, their importance in cellular functions, and the molecular mechanisms underlying efficient sorting of hydrophobic lipoproteins to the outer membrane through the hydrophilic periplasm.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Lipoproteínas/metabolismo , Bactérias/genética , Proteínas de Bactérias/genética , Lipoproteínas/genética , Transporte Proteico
20.
J Microbiol Methods ; 86(1): 97-103, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21549162

RESUMO

We developed a novel method using indirect staining with cerium chloride for visualization of the catechin derivative epigallocatechin gallate (EGCg) on the surface of particles, i.e., polystyrene beads and bacterial cells, by electron microscopy. The staining method is based on the fact that in an alkaline environment, EGCg produces hydrogen peroxide, and then hydrogen peroxide reacts with cerium, resulting in a cerium hydroperoxide precipitate. This precipitate subsequently reacts with EGCg to produce larger deposits. The amount of precipitate is proportional to the amount of EGCg. Highly EGCg-sensitive Staphylococcus aureus and EGCg-resistant Escherichia coli were treated with EGCg under various pH conditions. Transmission electron microscopy observation showed that the amount of deposits on S. aureus increased with an increase in EGCg concentration. After treating bacterial cells with 0.5mg/mL EGCg (pH 6.0), attachment of EGCg was significantly lower to E. coli than to S. aureus. This is the first report that shows differences in affinity of EGCg to the cell surfaces of Gram-positive and -negative bacteria by electron microscopy.


Assuntos
Catequina/análogos & derivados , Cério/química , Corantes/química , Escherichia coli/química , Coloração e Rotulagem/métodos , Staphylococcus aureus/química , Catequina/química , Escherichia coli/ultraestrutura , Microscopia Eletrônica , Coloração e Rotulagem/instrumentação , Staphylococcus aureus/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...