Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1360041, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895158

RESUMO

Fibrocartilaginous entheses consist of tendons, unmineralized and mineralized fibrocartilage, and subchondral bone, each exhibiting varying stiffness. Here we examined the functional role of sclerostin, expressed in mature mineralized fibrochondrocytes. Following rapid mineralization of unmineralized fibrocartilage and concurrent replacement of epiphyseal hyaline cartilage by bone, unmineralized fibrocartilage reexpanded after a decline in alkaline phosphatase activity at the mineralization front. Sclerostin was co-expressed with osteocalcin at the base of mineralized fibrocartilage adjacent to subchondral bone. In Scx-deficient mice with less mechanical loading due to defects of the Achilles tendon, sclerostin+ fibrochondrocyte count significantly decreased in the defective enthesis where chondrocyte maturation was markedly impaired in both fibrocartilage and hyaline cartilage. Loss of the Sost gene, encoding sclerostin, elevated mineral density in mineralized zones of fibrocartilaginous entheses. Atomic force microscopy analysis revealed increased fibrocartilage stiffness. These lines of evidence suggest that sclerostin in mature mineralized fibrochondrocytes acts as a modulator for mechanical tissue integrity of fibrocartilaginous entheses.

2.
Sci Rep ; 13(1): 3442, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859576

RESUMO

The lineage of periodontal ligament (PDL) stem cells contributes to alveolar bone (AB) and cementum formation, which are essential for tooth-jawbone attachment. Leptin receptor (LepR), a skeletal stem cell marker, is expressed in PDL; however, the stem cell capacity of LepR+ PDL cells remains unclear. We used a Cre/LoxP-based approach and detected LepR-cre-labeled cells in the perivascular around the root apex; their number increased with age. In the juvenile stage, LepR+ PDL cells differentiated into AB-embedded osteocytes rather than cementocytes, but their contribution to both increased with age. The frequency of LepR+ PDL cell-derived lineages in hard tissue was < 20% per total cells at 1-year-old. Similarly, LepR+ PDL cells differentiated into osteocytes following tooth extraction, but their frequency was < 9%. Additionally, both LepR+ and LepR- PDL cells demonstrated spheroid-forming capacity, which is an indicator of self-renewal. These results indicate that both LepR+ and LepR- PDL populations contributed to hard tissue formation. LepR- PDL cells increased the expression of LepR during spheroid formation, suggesting that the LepR- PDL cells may hierarchically sit upstream of LepR+ PDL cells. Collectively, the origin of hard tissue-forming cells in the PDL is heterogeneous, some of which express LepR.


Assuntos
Ligamento Periodontal , Receptores para Leptina , Células-Tronco , Diferenciação Celular , Células do Tecido Conjuntivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...