Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reproduction ; 151(5): 517-26, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26908917

RESUMO

In mares, prostaglandin F2α (PGF2α) secreted from the endometrium is a major luteolysin. Some domestic animals have an auto-amplification system in which PGF2α can stimulate its own production. Here, we investigated whether this is also the case in mares. In an in vivo study, mares at the mid-luteal phase (days 6-8 of estrous cycle) were injected i.m. with cloprostenol (250 µg) and blood samples were collected at fixed intervals until 72 h after treatment. Progesterone (P4) concentrations started decreasing 45 min after the injection and continued to decrease up to 24 h (P < 0.05). In turn, 13,14-dihydro-15-keto-PGF2α (PGFM) metabolite started to increase 4h after an injection and continued to increase up to 72 h (P < 0.05). PGF receptor (PTGFR) mRNA expression in the endometrium was significantly higher in the late luteal phase than in the early and regressed luteal phases (P < 0.05). In vitro, PGF2α significantly stimulated (P < 0.05) PGF2α production by endometrial tissues and endometrial epithelial and stromal cells and significantly increased (P < 0.05) the mRNA expression of prostaglandin-endoperoxide synthase-2 (PTGS2), an enzyme involved in PGF2α synthesis in endometrial cell. These findings strongly suggest the existence of an endometrial PGF2α auto-amplification system in mares.


Assuntos
Corpo Lúteo/metabolismo , Dinoprosta/farmacologia , Endométrio/metabolismo , Ciclo Estral/metabolismo , Células Estromais/metabolismo , Abortivos não Esteroides/farmacologia , Animais , Western Blotting , Células Cultivadas , Corpo Lúteo/efeitos dos fármacos , Dinoprosta/análogos & derivados , Dinoprosta/sangue , Endométrio/efeitos dos fármacos , Ciclo Estral/efeitos dos fármacos , Feminino , Cavalos , Progesterona/sangue , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/efeitos dos fármacos
2.
J Pharm Biomed Anal ; 108: 102-12, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25734526

RESUMO

Indigo plant (Polygonum tinctorium Lour) has been utilized as a medicinal plant with a variety of biological activities. We have recently detected higher levels of flavonoids in indigo leaves. This study was undertaken to conduct the simultaneous analysis of those flavonoids using total extracts from indigo leaves by ultra-performance liquid chromatography-electrospray ionization-time-of-flight/mass spectrometry(E) (UPLC-ESI-TOF/MS(E)). The analysis by UPLC-ESI-TOF/MS(E) allowed us to determine 11 peaks of flavonoid species. The chemical structures of these compounds were identified as flavonol O-glycosides with different types of aglycones by the combination of spectroscopic and chemical methods. The predominant compounds were flavonol O-glycosides with 3,5,4'-trihydroxy-6,7-methylenedioxyflavone as an aglycone. Of these, three compounds were elucidated as new compounds. All the isolated flavonol O-glycosides exhibited the inhibitory activity against 3-hydroxy-3-methylglutaryl-CoA reductase in a dose-dependent manner with different potencies. Taken together, our results suggest the potential usefulness of the major flavonol O-glycosides from indigo leaves in controlling cholesterol biosynthesis.


Assuntos
Flavonóis/isolamento & purificação , Glicosídeos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Polygonum/química , Cromatografia Líquida de Alta Pressão/métodos , Relação Dose-Resposta a Droga , Flavonóis/química , Flavonóis/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/isolamento & purificação , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Folhas de Planta , Espectrometria de Massas por Ionização por Electrospray/métodos
3.
J Reprod Dev ; 60(2): 150-4, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24492656

RESUMO

Regression of the corpus luteum (CL) is characterized by a decay in progesterone (P4) production (functional luteolysis) and disappearance of luteal tissues (structural luteolysis). In mares, structural luteolysis is thought to be caused by apoptosis of luteal cells, but functional luteolysis is poorly understood. 20α-hydroxysteroid dehydrogenase (20α-HSD) catabolizes P4 into its biologically inactive form, 20α-hydroxyprogesterone (20α-OHP). In mares, aldo-keto reductase (AKR) 1C23, which is a member of the AKR superfamily, has 20α-HSD activity. To clarify whether AKR1C23 is associated with functional luteolysis in mares, we investigated the expression of AKR1C23 in the CL in different luteal phases. The luteal P4 concentration and levels of 3ß-hydroxysteroid dehydrogenase (3ß-HSD) mRNA were higher in the mid luteal phase than in the late and regressed luteal phases (P<0.05), but the level of 3ß-HSD protein was higher in the late luteal phase than in the regressed luteal phase (P<0.05). The luteal 20α-OHP concentration and the level of AKR1C23 mRNA were higher in the late luteal phase than in the early and mid luteal phases (P<0.05), and the level of AKR1C23 protein was also highest in the late luteal phase. Taken together, these findings suggest that metabolism of P4 by AKR1C23 is one of the processes contributing to functional luteolysis in mares.


Assuntos
Aldeído Redutase/biossíntese , Corpo Lúteo/enzimologia , Cavalos/metabolismo , Fase Luteal/metabolismo , Luteólise/fisiologia , 20-alfa-Di-Hidroprogesterona/biossíntese , 20-alfa-Di-Hidroprogesterona/genética , 3-Hidroxiesteroide Desidrogenases/biossíntese , 3-Hidroxiesteroide Desidrogenases/genética , Aldeído Redutase/genética , Aldo-Ceto Redutases , Animais , Western Blotting , Feminino , Regulação Enzimológica da Expressão Gênica , Progesterona/biossíntese , Progesterona/genética , RNA/química , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária
4.
J Equine Sci ; 24(3): 47-51, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24834001

RESUMO

Evaluation of a new chemiluminescent enzyme immunoassay, the PATHFAST assay system (PATHFAST), for measurement of circulating progesterone in mares was performed. Five mares at the mid-luteal stage were administrated a single i.m. injection of prostaglandin F2α analog (PGF2α; cloprostenol 250 µg/ml), and then blood samples were collected from the jugular vein at 0, 15, 30 and 45 min, at one-hour intervals until 24 and at 48 hr via a catheter in the jugular vein. To monitor the physiological changes in circulating progesterone in mares after induced luteolysis, concentrations of progesterone in whole blood and serum samples were measured by PATHFAST. In addition, concentrations of progesterone in serum samples measured by PATHFAST were compared with those measured by radioimmunoassay (RIA) and enzyme immunoassay (EIA). Using PATHFAST, the serum concentrations of progesterone in mares correlated highly with those of whole blood samples (r=0.9672, n=88). The serum concentrations of progesterone as measured by PATHFAST correlated well with RIA (r=0.9654, n=88) and EIA (r=0.9323, n=112). An abrupt decline in circulating progesterone in whole blood samples was observed within 2 hr (50%), followed by a gradual decline until 48 hr later. The results for progesterone in whole blood samples correlated highly with those in serum samples, and the declining pattern paralleled that of the serum samples. These results demonstrated that PATHFAST is useful in the equine clinic as an accurate diagnostic tool for rapid assay of progesterone within 26 min, using unextracted whole blood.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...