Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 30(Pt 4): 822-830, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37159289

RESUMO

A von Hámos spectrometer has been implemented in the vacuum interaction chamber 1 of the High Energy Density instrument at the European X-ray Free-Electron Laser facility. This setup is dedicated, but not necessarily limited, to X-ray spectroscopy measurements of samples exposed to static compression using a diamond anvil cell. Si and Ge analyser crystals with different orientations are available for this setup, covering the hard X-ray energy regime with a sub-eV energy resolution. The setup was commissioned by measuring various emission spectra of free-standing metal foils and oxide samples in the energy range between 6 and 11 keV as well as low momentum-transfer inelastic X-ray scattering from a diamond sample. Its capabilities to study samples at extreme pressures and temperatures have been demonstrated by measuring the electronic spin-state changes of (Fe0.5Mg0.5)O, contained in a diamond anvil cell and pressurized to 100 GPa, via monitoring the Fe Kß fluorescence with a set of four Si(531) analyser crystals at close to melting temperatures. The efficiency and signal-to-noise ratio of the spectrometer enables valence-to-core emission signals to be studied and single pulse X-ray emission from samples in a diamond anvil cell to be measured, opening new perspectives for spectroscopy in extreme conditions research.


Assuntos
Diamante , Elétrons , Diamante/química , Radiografia , Raios X , Lasers
2.
Biophys J ; 121(20): 3811-3825, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36110043

RESUMO

In this paper, we studied fusogenic peptides of class I-III fusion proteins, which are relevant to membrane fusion for certain enveloped viruses, in contact with model lipid membranes. We resolved the vertical structure and examined the adsorption or penetration behavior of the fusogenic peptides at phospholipid Langmuir monolayers with different initial surface pressures with x-ray reflectometry. We show that the fusion loops of tick-borne encephalitis virus (TBEV) glycoprotein E and vesicular stomatitis virus (VSV) G-protein are not able to insert deeply into model lipid membranes, as they adsorbed mainly underneath the headgroups with only limited penetration depths into the lipid films. In contrast, we observed that the hemagglutinin 2 fusion peptide (HA2-FP) and the VSV-transmembrane domain (VSV-TMD) can penetrate deeply into the membranes. However, in the case of VSV-TMD, the penetration was suppressed already at low surface pressures, whereas HA2-FP was able to insert even into highly compressed films. Membrane fusion is accompanied by drastic changes of the membrane curvature. To investigate how the peptides affect the curvature of model lipid membranes, we examined the effect of the fusogenic peptides on the equilibration of cubic monoolein structures after a phase transition from a lamellar state induced by an abrupt hydrostatic pressure reduction. We monitored this process in presence and absence of the peptides with small-angle x-ray scattering and found that HA2-FP and VSV-TMD drastically accelerate the equilibration, while the fusion loops of TBEV and VSV stabilize the swollen state of the lipid structures. In this work, we show that the class I fusion peptide of HA2 penetrates deeply into the hydrophobic region of membranes and is able to promote and accelerate the formation of negative curvature. In contrast, we found that the class II and III fusion loops of TBEV and VSV tend to counteract negative membrane curvature.


Assuntos
Hemaglutininas , Fusão de Membrana , Peptídeos/química , Transição de Fase , Fosfolipídeos
3.
ACS Omega ; 7(26): 22377-22382, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35811869

RESUMO

An X-ray reflectivity study on the interaction of recombinant human resistin (hRes) with fibrillation-prone human islet amyloid polypeptide (hIAPP) at anionic phospholipid Langmuir films as model membranes is presented. Aggregation and amyloid formation of hIAPP is considered the main mechanism of pancreatic ß-cell loss in patients with type 2 diabetes mellitus. Resistin shows a chaperone-like ability, but also tends to form aggregates by itself. Resistin and hIAPP cross multiply metabolism pathways. In this study, we researched the potential protective effects of resistin against hIAPP-induced lipid membrane rupture. The results demonstrate that resistin can inhibit or prevent hIAPP adsorption even in the presence of aggregation-promoting negatively charged lipid interfaces. Moreover, we found strong hydrophobic interactions of resistin at the bare buffer-air interface.

4.
Langmuir ; 38(21): 6690-6699, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35588471

RESUMO

We present a surface-sensitive X-ray scattering study on the influence of gaseous and aerolized perfluorocarbons (FCs) on zwitterionic and anionic phospholipid Langmuir films, which serve as a simplified model system of lung surfactants. It was found that small gaseous FC molecules like F-propane and F-butane penetrate phospholipid monolayers and accumulate between the alkyl chains and form islands. This clustering process can trigger the formation of lipid crystallites at low initial surface pressures. In contrast, the large linear FC F-octyl bromide fluidizes membranes, causing a dissolution of crystalline domains. The bicyclic FC F-decalin accumulates between the alkyl chains of 1,2-dipalmitoyl phosphatidylcholine but cannot penetrate the more densely packed 1,2-dipalmitoyl phosphatidic acid films because of its size. The effects of FCs on lung surfactants are discussed in the framework of currently proposed therapeutic methods for acute respiratory distress syndrome using FC gases, vapor, or aerosol ventilation causing monolayer fluidization effects. This study implies that the highly biocompatible and nontoxic FCs could be beneficial in the treatment of lung diseases with injured nonfunctional lung surfactants in a novel approach for ventilation.


Assuntos
Fluorocarbonos , Surfactantes Pulmonares , 1,2-Dipalmitoilfosfatidilcolina/química , Fluorocarbonos/química , Gases , Pulmão , Fosfolipídeos/química , Surfactantes Pulmonares/química , Propriedades de Superfície , Tensoativos
5.
Soft Matter ; 18(5): 990-998, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35015016

RESUMO

Many vital processes that take place in biological cells involve remodeling of lipid membranes. These processes take place in a milieu that is packed with various solutes, ranging from ions and small organic osmolytes to proteins and other macromolecules, occupying about 30% of the available volume. In this work, we investigated how molecular crowding, simulated with the polymer polyethylene glycol (PEG), and the osmolytes urea and trimethylamine-N-oxide (TMAO) affect the equilibration of cubic monoolein structures after a phase transition from a lamellar state induced by an abrupt pressure reduction. In absence of additives, swollen cubic crystallites form after the transition, releasing excess water over several hours. This process is reflected in a decreasing lattice constant and was monitored with small angle X-ray scattering. We found that the osmotic pressure exerted by PEG and TMAO, which are displaced from narrow inter-bilayer spaces, accelerates the equilibration. When the radius of gyration of the added PEG was smaller than the radius of the water channels of the cubic phase, the effect became more pronounced with increasing molecular weight of the polymers. As the release of hydration water from the cubic structures is accompanied by an increasing membrane curvature and a reduction of the interface between lipids and aqueous phase, urea, which has a slight affinity to reside near membrane surfaces, stabilized the swollen crystallites and slowed down the equilibration dynamics. Our results support the view that cellular solutes are important contributors to dynamic membrane processes, as they can accelerate dehydration of inter-bilayer spaces and promote or counteract membrane curvature.


Assuntos
Glicerídeos , Água , Transição de Fase , Soluções
6.
Phys Chem Chem Phys ; 23(42): 24211-24221, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34693949

RESUMO

The understanding of the microstructure of associated liquids promoted by hydrogen-bonding and constrained by steric hindrance is highly relevant in chemistry, physics, biology and for many aspects of daily life. In this study we use a combination of X-ray diffraction, dielectric spectroscopy and molecular dynamics simulations to reveal temperature induced changes in the microstructure of different octanol isomers, i.e., linear 1-octanol and branched 2-, 3- and 4-octanol. In all octanols, the hydroxyl groups form the basis of chain-, cyclic- or loop-like bonded structures that are separated by outwardly directed alkyl chains. This clustering is analyzed through the scattering pre-peaks observed from X-ray scattering and simulations. The charge ordering which pilots OH aggregation can be linked to the strength of the Debye process observed in dielectric spectroscopy. Interestingly, all methods used here converge to the same interpretation: as one moves from 1-octanol to the branched octanols, the cluster structure evolves from loose large aggregates to a larger number of smaller, tighter aggregates. All alcohols exhibit a peculiar temperature dependence of both the pre-peak and Debye process, which can be understood as a change in microstructure promoted by chain association with increased chain length possibly assisted by ring-opening effects. All these results tend to support the intuitive picture of the entropic constraint provided by branching through the alkyl tails and highlight its capital entropic role in supramolecular assembly.

7.
Phys Chem Chem Phys ; 23(27): 14845-14856, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34223594

RESUMO

Knowledge of the microscopic structure of fluids and changes thereof with pressure and temperature is important for the understanding of chemistry and geochemical processes. In this work we investigate the influence of sodium chloride on the hydrogen-bond network in aqueous solution up to supercritical conditions. A combination of in situ X-ray Raman scattering and ab initio molecular dynamics simulations is used to probe the oxygen K-edge of the alkali halide aqueous solution in order to obtain unique information about the oxygen's local coordination around the ions, e.g. solvation-shell structure and the influence of ion pairing. The measured spectra exhibit systematic temperature dependent changes, which are entirely reproduced by calculations on the basis of structural snapshots obtained via ab initio molecular dynamics simulations. Analysis of the simulated trajectories allowed us to extract detailed structural information. This combined analysis reveals a net destabilizing effect of the dissolved ions which is reduced with rising temperature. The observed increased formation of contact ion pairs and occurrence of larger polyatomic clusters at higher temperatures can be identified as a driving force behind the increasing structural similarity between the salt solution and pure water at elevated temperatures and pressures with drawback on the role of hydrogen bonding in the hot fluid. We discuss our findings in view of recent results on hot NaOH and HCl aqueous fluids and emphasize the importance of ion pairing in the interpretation of the microscopic structure of water.

8.
J Synchrotron Radiat ; 27(Pt 2): 414-424, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153280

RESUMO

A portable IR fiber laser-heating system, optimized for X-ray emission spectroscopy (XES) and nuclear inelastic scattering (NIS) spectroscopy with signal collection through the radial opening of diamond anvil cells near 90°with respect to the incident X-ray beam, is presented. The system offers double-sided on-axis heating by a single laser source and zero attenuation of incoming X-rays other than by the high-pressure environment. A description of the system, which has been tested for pressures above 100 GPa and temperatures up to 3000 K, is given. The XES spectra of laser-heated Mg0.67Fe0.33O demonstrate the potential to map the iron spin state in the pressure-temperature range of the Earth's lower mantle, and the NIS spectra of laser-heated FeSi give access to the sound velocity of this candidate of a phase inside the Earth's core. This portable system represents one of the few bridges across the gap between laser heating and high-resolution X-ray spectroscopies with signal collection near 90°.

9.
Phys Rev Lett ; 121(3): 038101, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30085800

RESUMO

The influence of natural cosolvent mixtures on the pressure-dependent structure and protein-protein interaction potential of dense protein solutions is studied and analyzed using small-angle X-ray scattering in combination with a liquid-state theoretical approach. The deep-sea osmolyte trimethylamine-N-oxide is shown to play a crucial and singular role in its ability to not only guarantee sustainability of the native protein's folded state under harsh environmental conditions, but it also controls water-mediated intermolecular interactions at high pressure, thereby preventing contact formation and hence aggregation of proteins.


Assuntos
Modelos Químicos , Muramidase/química , Água/química , Pressão Hidrostática , Metilaminas/química , Concentração Osmolar , Espalhamento a Baixo Ângulo , Soluções , Difração de Raios X
10.
Langmuir ; 34(19): 5403-5408, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29658720

RESUMO

We present an in situ X-ray reflectivity study of the adsorption behavior of the protein lysozyme on titanium oxide layers under variation of different thermodynamic parameters, such as temperature, hydrostatic pressure, and pH value. Moreover, by varying the layer thickness of the titanium oxide layer on a silicon wafer, changes in the adsorption behavior of lysozyme were studied. In total, we determined less adsorption on titanium oxide compared with silicon dioxide, while increasing the titanium oxide layer thickness causes stronger adsorption. Furthermore, the variation of temperature from 20 to 80 °C yields an increase in the amount of adsorbed lysozyme at the interface. Additional measurements with variation of the pH value of the system in a region between pH 2 and 12 show that the surface charge of both protein and titanium oxide has a crucial role in the adsorption process. Further pressure-dependent experiments between 50 and 5000 bar show a reduction of the amount of adsorbed lysozyme with increasing pressure.


Assuntos
Muramidase/metabolismo , Titânio/química , Água/química , Adsorção , Concentração de Íons de Hidrogênio , Muramidase/química , Propriedades de Superfície , Temperatura , Termodinâmica
11.
J Phys Chem B ; 122(14): 3953-3960, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29488751

RESUMO

An X-ray reflectivity study on the adsorption behavior of human apolipoprotein A1 (apoA1) at hydrophilic and hydrophobic interfaces is presented. It is shown that the protein interacts via electrostatic and hydrophobic interactions with the interfaces, resulting in the absorption of the protein. pH dependent measurements at the solid/liquid interface between silicon dioxide and aqueous protein solution show that in a small pH range between pH 4 and 6, adsorption is increased due to electrostatic attraction. Here, the native shape of the protein seems to be conserved. In contrast, the adsorption at the liquid/gas interface is mainly driven by hydrophobic effects, presumably by extending the hydrophobic regions of the amphipathic helices, and results in a conformational change of the protein during adsorption. However, the addition of differently charged membrane-forming lipids at the liquid/gas interface illustrates the ability of apoA1 to include lipids, resulting in a depletion of the lipids from the interface.


Assuntos
Apolipoproteína A-I/química , Proteínas/química , Dióxido de Silício/química , Água/química , Ar , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Eletricidade Estática , Tensão Superficial
12.
Phys Chem Chem Phys ; 20(10): 7093-7104, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29479628

RESUMO

Investigating the correlation between structure and activity of oligomeric enzymes at high pressure is essential for understanding intermolecular interactions and reactivity of proteins in cellulo of organisms thriving at extreme environmental conditions as well as for biotechnological applications, such as high-pressure enzymology. In a combined experimental effort employing small-angle X-ray scattering, FT-IR and fluorescence spectroscopy as well as stopped-flow enzyme kinetics in concert with high-pressure techniques, we reveal the pressure-induced conformational changes of the dimeric enzyme horse liver alcohol dehydrogenase (LADH) on the quaternary, secondary and tertiary structural level. Moreover, the effects of cosolutes and crowding agents, mimicking intracellular conditions, have been addressed. Our results show that beyond an increase of enzymatic activity at low pressures, loss of enzyme activity occurs around 600-800 bar, i.e. in a pressure regime where small conformational changes take place in the coenzyme's binding pocket, only. Whereas higher-order oligomers dissociate at low pressures, subunit dissociation of dimeric LADH takes place, depending on the solution conditions, between 2000 and 4000 bar, only. Oligomerization and subunit dissociation are modulated by cosolvents such as urea or trimethylamine-N-oxide as well as by the crowding agent polyethylene glycol, based on their tendency to bind to the protein's interface or act via their excluded volume effect, respectively.


Assuntos
Álcool Desidrogenase/química , Animais , Sítios de Ligação , Cristalografia por Raios X/métodos , Cavalos , Cinética , Fígado/metabolismo , Metilaminas/química , Pressão , Ligação Proteica , Conformação Proteica , Desnaturação Proteica , Multimerização Proteica , Espectrometria de Fluorescência/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
13.
Sci Rep ; 7(1): 16526, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29184152

RESUMO

Iron-bearing carbonates are candidate phases for carbon storage in the deep Earth and may play an important role for the Earth's carbon cycle. To elucidate the properties of carbonates at conditions of the deep Earth, we investigated the pressure driven magnetic high spin to low spin transition of synthetic siderite FeCO3 and magnesiosiderite (Mg0.74Fe0.26)CO3 single crystals for pressures up to 57 GPa using diamond anvil cells and x-ray Raman scattering spectroscopy to directly probe the iron 3d electron configuration. An extremely sharp transition for siderite single crystal occurs at a notably low pressure of 40.4 ± 0.1 GPa with a transition width of 0.7 GPa when using the very soft pressure medium helium. In contrast, we observe a broadening of the transition width to 4.4 GPa for siderite with a surprising additional shift of the transition pressure to 44.3 ± 0.4 GPa when argon is used as pressure medium. The difference is assigned to larger pressure gradients in case of argon. For magnesiosiderite loaded with argon, the transition occurs at 44.8 ± 0.8 GPa showing similar width as siderite. Hence, no compositional effect on the spin transition pressure is observed. The spectra measured within the spin crossover regime indicate coexistence of regions of pure high- and low-spin configuration within the single crystal.

14.
Angew Chem Int Ed Engl ; 56(42): 12958-12961, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28816388

RESUMO

We have gained new insight into the so-called hydrophobic gap, a molecularly thin region of decreased electron density at the interface between water and a solid hydrophobic surface, by X-ray reflectivity experiments and molecular dynamics simulations at different hydrostatic pressures. Pressure variations show that the hydrophobic gap persists up to a pressure of 5 kbar. The electron depletion in the interfacial region strongly decreases with an increase in pressure, indicating that the interfacial region is compressed more strongly than bulk water. The decrease is most significant up to 2 kbar; beyond that, the pressure response of the depletion is less pronounced.

15.
Biophys Chem ; 231: 45-49, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28622937

RESUMO

In the present work two subclasses of the human antibody Immunoglobulin G (IgG) have been investigated by Small-Angle X-ray Scattering under high hydrostatic pressures up to 5kbar. It is shown that IgG adopts a symmetric T-shape in solution which differs significantly from available crystal structures. Moreover, high-pressure experiments verify the high stability of the IgG molecule. It is not unfolded by hydrostatic pressures of up to 5kbar but a slight increase of the radius of gyration was observed at elevated pressures.


Assuntos
Imunoglobulina G/química , Humanos , Pressão Hidrostática , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
16.
Food Chem ; 218: 256-260, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27719907

RESUMO

In this work, the interaction of soy sauces with hydrophobic surfaces has been analyzed. Hydrophobic self-assembled monolayers on gold or silicon dioxide were used to harvest conditioning layers from soy sauce products with varying amounts of additives. The data was compared to adsorption of soy protein and glutamic acid as common ingredients. Spectral ellipsometry revealed that all tested sauces led to the formation of thin overlayers on hydrophobic surfaces. Products with less additives yielded adlayers in the same thickness range as pure soy protein. In contrast, sauces with more ingredients create distinctly thicker films. Using water contact angle goniometry, it is shown that all adlayers render the substrate more hydrophilic. Infrared spectroscopy provided a deeper insight into the adlayer chemistry and revealed that the adlayer composition is dominated by protein rich components. X-ray reflectivity on selected films provided further insight into the density profiles within the adlayers on the molecular scale.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Alimentos de Soja/análise , Análise de Alimentos , Manipulação de Alimentos , Ouro/química , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Água/análise , Raios X
17.
J Phys Chem B ; 120(29): 7148-53, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27387338

RESUMO

The effect of hydrostatic pressure on the structure of a bicontinuous microemulsion in the presence of a solid interface has been studied by X-ray reflectometry and compared to the bulk behavior determined by small-angle X-ray scattering. Surface-induced lamellar ordering is observed close to the hydrophilic interface, which persists upon compression. The lamellar domains are compressed, but the correlation length of lamellar order does not change with pressure. SAXS measurements on the bulk microemulsion revealed an increased order upon pressurization. Although pressure can cause the formation of highly ordered lamellar phases from ordered bicontinuous cubic phases, such a scenario is not observed for the disordered analogue studied here. High pressure increases the stiffness of the interfacial surfactant layer, but this is not sufficient to overcome the loss in conformational entropy that would result from a transition to an ordered lamellar phase. Possible technological and biological implications of our results are briefly discussed.

18.
Phys Chem Chem Phys ; 18(29): 19866-72, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27389481

RESUMO

Using a combination of high resolution X-ray powder diffraction and X-ray Raman scattering spectroscopy at the B K- and Ca L2,3-edges, we analyzed the reaction products of Ca(BH4)2 after annealing at 350 °C and 400 °C under vacuum conditions. We observed the formation of nanocrystalline/amorphous CaB6 mainly and found only small contributions from amorphous B for annealing times larger than 2 h. For short annealing times of 0.5 h at 400 °C we observed neither CaB12H12 nor CaB6. The results indicate a reaction pathway in which Ca(BH4)2 decomposes to B and CaH2 and finally reacts to form CaB6. These findings confirm the potential of using Ca(BH4)2 as a hydrogen storage medium and imply the desired cycling capabilities for achieving high-density hydrogen storage materials.

19.
Phys Chem Chem Phys ; 18(21): 14252-6, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27165990

RESUMO

We present results from small-angle X-ray scattering and turbidity measurements on the effect of high hydrostatic pressure on the phase behavior of dense lysozyme solutions in the liquid-liquid phase separation region, and characterize the underlying intermolecular protein-protein interactions as a function of temperature and pressure under charge-screening conditions (0.5 M NaCl). A reentrant liquid-liquid phase separation region is observed at elevated pressures, which may originate in the pressure dependence of the solvent-mediated protein-protein interaction. A temperature-pressure-concentration phase diagram was constructed for highly concentrated lysozyme solutions over a wide range of temperatures, pressures and protein concentrations including the critical region of the liquid-liquid miscibility gap.


Assuntos
Muramidase/química , Pressão Hidrostática , Muramidase/metabolismo , Nefelometria e Turbidimetria , Transição de Fase , Mapas de Interação de Proteínas , Espalhamento a Baixo Ângulo , Cloreto de Sódio/química , Soluções/química , Temperatura , Difração de Raios X
20.
Langmuir ; 32(11): 2638-43, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26927365

RESUMO

In this work, the structure of solid-supported lipid multilayers exposed to increased hydrostatic pressure was studied in situ by X-ray reflectometry at the solid-liquid interface between silicon and an aqueous buffer solution. The layers' vertical structure was analyzed up to a maximum pressure of 4500 bar. The multilayers showed phase transitions from the fluid into different gel phases. With increasing pressure, a gradual filling of the sublayers between the hydrophilic head groups with water was observed. This process was inverted when the pressure was decreased, yielding finally smaller water layers than those in the initial state. As is commonly known, water has an abrasive effect on lipid multilayers by the formation of vesicles. We show that increasing pressure can reverse this process so that a controlled switching between multi- and bilayers is possible.


Assuntos
Bicamadas Lipídicas/química , Dimiristoilfosfatidilcolina/química , Pressão Hidrostática , Transição de Fase , Silício , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...