Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(2): e0246493, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33529247

RESUMO

Salinity is among the most important abiotic stresses, which negatively affect growth, nutrient uptake and yield of crop plants. Application of different micronutrients, particularly zinc (Zn) have the potential to ameliorate the negative impacts of salinity stress. However, the role of Zn in improving salinity tolerance of basil (Ocimum basilicum L.) is poorly understood. This study evaluated the impact of different Zn levels (0, 5 and 10 mg kg-1) on growth and nutrient acquisition traits of basil under different salinity levels (0, 0.5, 1.0 and 1.5% NaCl). Data relating to biomass production, chlorophyll index, sodium (Na), potassium (K) uptake, K/Na ratio, Zn, copper (Cu), manganese (Mn) and iron (Fe) uptake were recorded. Increasing salinity level reduced biomass production, chlorophyll index and nutrient uptake traits (except for Na and Fe accumulation) of basil. Zinc application (10 mg kg-1) improved biomass production, chlorophyll index and nutrient acquisition traits under normal as well as saline conditions. The reduction in chlorophyll index and biomass production was higher under 0 and 5 mg kg-1 than 10 mg kg-1 Zn application. The K concentration decreased under increasing salinity; however, Zn application improved K uptake under normal as well as saline conditions. Different growth and nutrient acquisition traits had negative correlations with Na accumulation; however, no positive correlation was recorded among growth and nutrient uptake traits. The results revealed that Zn application could improve the salinity tolerance of basil. However, actual biochemical and genetic mechanisms involved in Zn-induced salinity tolerance warrant further investigation.


Assuntos
Nitrogênio/metabolismo , Ocimum basilicum/crescimento & desenvolvimento , Fósforo/metabolismo , Estresse Salino , Zinco/farmacologia , Análise de Variância , Biomassa , Clorofila/metabolismo , Ocimum basilicum/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Sódio/análise , Cloreto de Sódio/farmacologia
2.
PLoS One ; 8(2): e57767, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23460903

RESUMO

Sudden elevations in external sodium chloride (NaCl) accelerate potassium (K(+)) efflux across the plasma membrane of plant root cells. It has been proposed that the extent of this acceleration can predict salt tolerance among contrasting cultivars. However, this proposal has not been considered in the context of plant nutritional history, nor has it been explored in rice (Oryza sativa L.), which stands among the world's most important and salt-sensitive crop species. Using efflux analysis with (42)K, coupled with growth and tissue K(+) analyses, we examined the short- and long-term effects of NaCl exposure to plant performance within a nutritional matrix that significantly altered tissue-K(+) set points in three rice cultivars that differ in salt tolerance: IR29 (sensitive), IR72 (moderate), and Pokkali (tolerant). We show that total short-term K(+) release from roots in response to NaCl stress is small (no more than 26% over 45 min) in rice. Despite strong varietal differences, the extent of efflux is shown to be a poor predictor of plant performance on long-term NaCl stress. In fact, no measure of K(+) status was found to correlate with plant performance among cultivars either in the presence or absence of NaCl stress. By contrast, shoot Na(+) accumulation showed the strongest correlation (a negative one) with biomass, under long-term salinity. Pharmacological evidence suggests that NaCl-induced K(+) efflux is a result of membrane disintegrity, possibly as result of osmotic shock, and not due to ion-channel mediation. Taken together, we conclude that, in rice, K(+) status (including efflux) is a poor predictor of salt tolerance and overall plant performance and, instead, shoot Na(+) accumulation is the key factor in performance decline on NaCl stress.


Assuntos
Oryza/genética , Oryza/fisiologia , Potássio/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Biomassa , Oryza/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Sódio/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...