Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 524(10): 1979-98, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27073064

RESUMO

Anatomical, molecular, and physiological interactions between astrocytes and neuronal synapses regulate information processing in the brain. The fruit fly Drosophila melanogaster has become a valuable experimental system for genetic manipulation of the nervous system and has enormous potential for elucidating mechanisms that mediate neuron-glia interactions. Here, we show the first electrophysiological recordings from Drosophila astrocytes and characterize their spatial and physiological relationship with particular synapses. Astrocyte intrinsic properties were found to be strongly analogous to those of vertebrate astrocytes, including a passive current-voltage relationship, low membrane resistance, high capacitance, and dye-coupling to local astrocytes. Responses to optogenetic stimulation of glutamatergic premotor neurons were correlated directly with anatomy using serial electron microscopy reconstructions of homologous identified neurons and surrounding astrocytic processes. Robust bidirectional communication was present: neuronal activation triggered astrocytic glutamate transport via excitatory amino acid transporter 1 (Eaat1), and blocking Eaat1 extended glutamatergic interneuron-evoked inhibitory postsynaptic currents in motor neurons. The neuronal synapses were always located within 1 µm of an astrocytic process, but none were ensheathed by those processes. Thus, fly astrocytes can modulate fast synaptic transmission via neurotransmitter transport within these anatomical parameters. J. Comp. Neurol. 524:1979-1998, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Astrócitos/fisiologia , Sistema Nervoso Central/citologia , Proteínas de Drosophila/metabolismo , Neurônios/fisiologia , Sinapses/fisiologia , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Ácido Aspártico/farmacologia , Astrócitos/ultraestrutura , Cloreto de Cádmio/farmacologia , Moléculas de Adesão Celular Neuronais/metabolismo , Sistema Nervoso Central/fisiologia , Sistema Nervoso Central/ultraestrutura , Colina O-Acetiltransferase/metabolismo , Drosophila , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Larva , Locomoção/genética , Rede Nervosa/fisiologia , Rede Nervosa/ultraestrutura , Neurônios/ultraestrutura , Bloqueadores dos Canais de Sódio/farmacologia , Sinapses/genética , Sinapses/ultraestrutura , Tetrodotoxina/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
2.
PLoS One ; 7(4): e33828, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22493675

RESUMO

Development of the adult olfactory system of the moth Manduca sexta depends on reciprocal interactions between olfactory receptor neuron (ORN) axons growing in from the periphery and centrally-derived glial cells. Early-arriving ORN axons induce a subset of glial cells to proliferate and migrate to form an axon-sorting zone, in which later-arriving ORN axons will change their axonal neighbors and change their direction of outgrowth in order to travel with like axons to their target areas in the olfactory (antennal) lobe. These newly fasciculated axon bundles will terminate in protoglomeruli, the formation of which induces other glial cells to migrate to surround them. Glial cells do not migrate unless ORN axons are present, axons fail to fasciculate and target correctly without sufficient glial cells, and protoglomeruli are not maintained without a glial surround. We have shown previously that Epidermal Growth Factor receptors and the IgCAMs Neuroglian and Fasciclin II play a role in the ORN responses to glial cells. In the present work, we present evidence for the importance of glial Fibroblast Growth Factor receptors in glial migration, proliferation, and survival in this developing pathway. We also report changes in growth patterns of ORN axons and of the dendrites of olfactory (antennal lobe) neurons following blockade of glial FGFR activation that suggest that glial FGFR activation is important in reciprocal communication between neurons and glial cells.


Assuntos
Manduca/metabolismo , Neuroglia/fisiologia , Condutos Olfatórios/metabolismo , Neurônios Receptores Olfatórios/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Antenas de Artrópodes/crescimento & desenvolvimento , Antenas de Artrópodes/metabolismo , Axônios/fisiologia , Moléculas de Adesão Celular Neuronais/fisiologia , Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células , Sobrevivência Celular/fisiologia , Dendritos/fisiologia , Feminino , Manduca/crescimento & desenvolvimento , Condutos Olfatórios/crescimento & desenvolvimento , Pirimidinas/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Transdução de Sinais/fisiologia
3.
Glia ; 59(9): 1273-95, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21732424

RESUMO

Investigators over the years have noted many striking similarities in the structural organization and function of neural circuits in higher invertebrates and vertebrates. In more recent years, the discovery of similarities in the cellular and molecular mechanisms that guide development of these circuits has driven a revolution in our understanding of neural development. Cellular mechanisms discovered to underlie axon pathfinding in grasshoppers have guided productive studies in mammals. Genes discovered to play key roles in the patterning of the fruitfly's central nervous system have subsequently been found to play key roles in mice. The diversity of invertebrate species offers to investigators numerous opportunities to conduct experiments that are harder or impossible to do in vertebrate species, but that are likely to shed light on mechanisms at play in developing vertebrate nervous systems. These experiments elucidate the broad suite of cellular and molecular interactions that have the potential to influence neural circuit formation across species. Here we focus on what is known about roles for glial cells in some of the important steps in neural circuit formation in experimentally advantageous insect species. These steps include axon pathfinding and matching to targets, dendritic patterning, and the sculpting of synaptic neuropils. A consistent theme is that glial cells interact with neurons in two-way, reciprocal interactions. We emphasize the impact of studies performed in insects and explore how insect nervous systems might best be exploited next as scientists seek to understand in yet deeper detail the full repertory of functions of glia in development.


Assuntos
Insetos/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Neuroglia/fisiologia , Animais , Antenas de Artrópodes/crescimento & desenvolvimento , Antenas de Artrópodes/fisiologia , Axônios/fisiologia , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Humanos , Corpos Pedunculados/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Sistema Nervoso/crescimento & desenvolvimento , Neurópilo/fisiologia , Vertebrados , Vias Visuais/citologia , Vias Visuais/crescimento & desenvolvimento
4.
J Comp Neurol ; 518(6): 815-38, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20058309

RESUMO

Glial cells have several critical roles in the developing and adult olfactory (antennal) lobe of the moth Manduca sexta. Early in development, glial cells occupy discrete regions of the developing olfactory pathway and processes of gamma-aminobutyric acid (GABA)ergic neurons extend into some of these regions. Because GABA is known to have developmental effects in a variety of systems, we explored the possibility that the glial cells express a GABA transporter that could regulate GABA levels to which olfactory neurons and glial cells are exposed. By using an antibody raised against a characterized high-affinity M. sexta GABA transporter with high sequence homology to known mammalian GABA transporters (Mbungu et al. [1995] Arch. Biochem. Biophys. 318:489-497; Umesh and Gill [2002] J. Comp. Neurol. 448:388-398), we found that the GABA transporter is localized to subsets of centrally derived glial cells during metamorphic adult development. The transporter persists into adulthood in a subset of the neuropil-associated glial cells, but its distribution pattern as determined by light-and electron-microscopic-level immunocytochemistry indicates that it could not serve to regulate GABA concentration in the synaptic cleft. Instead, its role is more likely to regulate extracellular GABA levels within the glomerular neuropil. Expression in the sorting zone glial cells disappears after the period of olfactory receptor axon ingrowth, but may be important during ingrowth if GABA regulates axon growth. Glial cells take up GABA, and that uptake can be blocked by L-2,4-diaminobutyric acid (DABA). This is the first molecular evidence that the central glial cell population in this pathway is heterogeneous.


Assuntos
Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Proteínas de Insetos/metabolismo , Manduca/crescimento & desenvolvimento , Manduca/metabolismo , Neuroglia/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Dendritos/metabolismo , Dendritos/ultraestrutura , Feminino , Masculino , Manduca/ultraestrutura , Metamorfose Biológica , Neuroglia/ultraestrutura , Neurônios/metabolismo , Neurônios/ultraestrutura , Condutos Olfatórios/crescimento & desenvolvimento , Condutos Olfatórios/metabolismo , Condutos Olfatórios/ultraestrutura , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/ultraestrutura , Ácido gama-Aminobutírico/metabolismo
5.
Neuron Glia Biol ; 6(4): 245-61, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21933469

RESUMO

In adult olfactory nerves of mammals and moths, a network of glial cells ensheathes small bundles of olfactory receptor axons. In the developing antennal nerve (AN) of the moth Manduca sexta, the axons of olfactory receptor neurons (ORNs) migrate from the olfactory sensory epithelium toward the antennal lobe. Here we explore developmental interactions between ORN axons and AN glial cells. During early stages in AN glial-cell migration, glial cells are highly dye coupled, dividing glia are readily found in the nerve and AN glial cells label strongly for glutamine synthetase. By the end of this period, dye-coupling is rare, glial proliferation has ceased, glutamine synthetase labeling is absent, and glial processes have begun to extend to enwrap bundles of axons, a process that continues throughout the remainder of metamorphic development. Whole-cell and perforated-patch recordings in vivo from AN glia at different stages of network formation revealed two potassium currents and an R-like calcium current. Chronic in vivo exposure to the R-type channel blocker SNX-482 halted or greatly reduced AN glial migration. Chronically blocking spontaneous Na-dependent activity by injection of tetrodotoxin reduced the glial calcium current implicating an activity-dependent interaction between ORNs and glial cells in the development of glial calcium currents.


Assuntos
Cálcio/metabolismo , Manduca/anatomia & histologia , Neuroglia/fisiologia , Nervo Olfatório/citologia , Nervo Olfatório/crescimento & desenvolvimento , Neurônios Receptores Olfatórios/fisiologia , Animais , Biofísica , Bloqueadores dos Canais de Cálcio/farmacologia , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/fisiologia , Células Cultivadas , Estimulação Elétrica , Junções Comunicantes/ultraestrutura , Glutamato-Amônia Ligase/metabolismo , Histonas/metabolismo , Manduca/crescimento & desenvolvimento , Potenciais da Membrana/efeitos dos fármacos , Microscopia Eletrônica/métodos , Rede Nervosa/fisiologia , Neuroglia/ultraestrutura , Neurônios Receptores Olfatórios/efeitos dos fármacos , Compostos Orgânicos/metabolismo , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Sódio , Venenos de Aranha/farmacologia , Tetrodotoxina/farmacologia
6.
PLoS One ; 4(9): e7222, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19787046

RESUMO

BACKGROUND: Reciprocal interactions between glial cells and olfactory receptor neurons (ORNs) cause ORN axons entering the brain to sort, to fasciculate into bundles destined for specific glomeruli, and to form stable protoglomeruli in the developing olfactory system of an experimentally advantageous animal species, the moth Manduca sexta. Epidermal growth factor receptors (EGFRs) and the cell adhesion molecules (IgCAMs) neuroglian and fasciclin II are known to be important players in these processes. METHODOLOGY/PRINCIPAL FINDINGS: We report in situ and cell-culture studies that suggest a role for glycosphingolipid-rich membrane subdomains in neuron-glia interactions. Disruption of these subdomains by the use of methyl-beta-cyclodextrin results in loss of EGFR activation, depletion of fasciclin II in ORN axons, and loss of neuroglian stabilization in the membrane. At the cellular level, disruption leads to aberrant ORN axon trajectories, small antennal lobes, abnormal arrays of olfactory glomerul, and loss of normal glial cell migration. CONCLUSIONS/SIGNIFICANCE: We propose that glycosphingolipid-rich membrane subdomains (possible membrane rafts or platforms) are essential for IgCAM-mediated EGFR activation and for anchoring of neuroglian to the cytoskeleton, both required for normal extension and sorting of ORN axons.


Assuntos
Receptores ErbB/metabolismo , Microdomínios da Membrana/química , Neurônios Receptores Olfatórios/metabolismo , Animais , Moléculas de Adesão Celular , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/metabolismo , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Receptores ErbB/química , Feminino , Masculino , Manduca , Camundongos , Estrutura Terciária de Proteína , beta-Ciclodextrinas/metabolismo
7.
J Comp Neurol ; 509(5): 526-50, 2008 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-18537134

RESUMO

In recent years the Drosophila olfactory system, with its unparalleled opportunities for genetic dissection of development and functional organization, has been used to study the development of central olfactory neurons and the molecular basis of olfactory coding. The results of these studies have been interpreted in the absence of a detailed understanding of the steps in maturation of glial cells in the antennal lobe. Here we present a high-resolution study of the glia associated with olfactory glomeruli in adult and developing antennal lobes. The study provides a basis for comparison of findings in Drosophila with those in the moth Manduca sexta that indicate a critical role for glia in antennal lobe development. Using flies expressing GFP under a Nervana2 driver to visualize glia for confocal microscopy, and probing at higher resolution with the electron microscope, we find that glial development in Drosophila differs markedly from that in moths: glial cell bodies remain in a rind around the glomerular neuropil; glial processes ensheathe axon bundles in the nerve layer but likely contribute little to axonal sorting; their processes insinuate between glomeruli only very late and then form only a sparse, open network around each glomerulus; and glial processes invade the synaptic neuropil. Taking our results in the context of previous studies, we conclude that glial cells in the developing Drosophila antennal lobe are unlikely to play a strong role in either axonal sorting or glomerulus stabilization and that in the adult, glial processes do not electrically isolate glomeruli from their neighbors.


Assuntos
Encéfalo/fisiologia , Encéfalo/ultraestrutura , Drosophila melanogaster/fisiologia , Drosophila melanogaster/ultraestrutura , Neuroglia/fisiologia , Neuroglia/ultraestrutura , Fatores Etários , Animais , Encéfalo/embriologia , Drosophila melanogaster/embriologia , Condutos Olfatórios/diagnóstico por imagem , Condutos Olfatórios/embriologia , Condutos Olfatórios/fisiologia , Ultrassonografia
8.
J Comp Neurol ; 495(5): 554-72, 2006 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-16498681

RESUMO

During development of the adult olfactory system of the moth Manduca sexta, olfactory receptor neurons extend axons from the olfactory epithelium in the antenna into the brain. As they arrive at the brain, interactions with centrally derived glial cells cause axons to sort and fasciculate with other axons destined to innervate the same glomeruli. Here we report studies indicating that activation of the epidermal growth factor receptor (EGFR) is involved in axon ingrowth and targeting. Blocking the EGFR kinase domain pharmacologically leads to stalling of many axons in the sorting zone and nerve layer as well as abnormal axonal fasciculation in the sorting zone. We also find that neuroglian, an IgCAM known to activate the EGFR through homophilic interactions in other systems, is transiently present on olfactory receptor neuron axons and on glia during the critical stages of the sorting process. The neuroglian is resistant to extraction with Triton X-100 in the sorting zone and nerve layer, possibly indicating its stabilization by homophilic binding in these regions. Our results suggest a mechanism whereby neuroglian molecules on axons and possibly sorting zone glia bind homophilically, leading to activation of EGFRs, with subsequent effects on axon sorting, pathfinding, and extension, and glomerulus development.


Assuntos
Axônios/metabolismo , Receptores ErbB/metabolismo , Manduca , Neurônios Receptores Olfatórios/metabolismo , Órgãos dos Sentidos , Olfato , Sequência de Aminoácidos , Animais , Axônios/ultraestrutura , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios Receptores Olfatórios/citologia , Quinazolinas/metabolismo , Órgãos dos Sentidos/citologia , Órgãos dos Sentidos/crescimento & desenvolvimento , Órgãos dos Sentidos/metabolismo , Alinhamento de Sequência
9.
Chem Senses ; 31(3): 237-47, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16407570

RESUMO

Glomeruli, neuropilar structures composed of olfactory receptor neuron (ORN) axon terminals and central neuron dendrites, are a common feature of olfactory systems. Typically, ORN axons segregate into glomeruli based on odor specificity, making glomeruli the basic unit for initial processing of odorant information. Developmentally, glomeruli arise from protoglomeruli, loose clusters of ORN axons that gradually synapse onto dendrites. Previous work in the moth Manduca sexta demonstrated that protoglomeruli develop in a wave across the antennal lobe (AL) during stage 5 of the 18 stages of metamorphic adult development. However, ORN axons from the distal segments of the antenna arrive at the AL for several more days. We report that protoglomeruli present at stage 5 account for only approximately two or three of adult glomeruli with the number of structures increasing over subsequent stages. How do these later arriving axons incorporate into glomeruli? Examining the dendritic projections of a unique serotonin-containing neuron into glomeruli at later stages revealed glomeruli with immature dendritic arbors intermingled among more mature glomeruli. Labeling ORN axons that originate in proximal segments of the antenna suggested that early-arriving axons target a limited number of glomeruli. We conclude that AL glomeruli form over an extended time period, possibly as a result of ORNs expressing new odorant receptors arriving from distal antennal segments.


Assuntos
Manduca/crescimento & desenvolvimento , Neurônios Receptores Olfatórios/citologia , Órgãos dos Sentidos/crescimento & desenvolvimento , Animais , Axônios/ultraestrutura , Dendritos/ultraestrutura , Feminino , Estágios do Ciclo de Vida , Masculino , Órgãos dos Sentidos/anatomia & histologia , Órgãos dos Sentidos/citologia , Fatores de Tempo
10.
J Comp Neurol ; 476(1): 1-18, 2004 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-15236463

RESUMO

In the moth Manduca sexta, development of the adult olfactory system depends on complex interactions between olfactory receptor neurons in the antenna, antennal-lobe neurons in the brain, and several classes of glial cells. As one approach to characterizing molecules that may play roles in these interactions, we used lectins to screen antennae and antennal lobes at different stages of adult development. We find that each of the major neural cell types has a distinct pattern of labeling by lectins. Effects of enzymatic and other treatments on lectin labeling lead us to conclude that the predominant lectin ligands are: glycosphingolipids and an O-linked, fucose-containing glycoprotein on axons of olfactory receptor neurons, O-linked glycoproteins on antennal-lobe neurons, and N-linked glycoproteins on all classes of glial cells in the primary olfactory pathway. Wheat germ agglutinin labels all olfactory axons uniformly during much of development, but labeling becomes restricted to the pheromone-responsive olfactory receptor neurons in the adult male. Succinylated WGA reveals differences in these axon classes earlier, as glomerului develop from protoglomeruli. The adult female displays a less pronounced difference in labeling of axons targeting ordinary and sexually dimorphic glomeruli. Differences in labeling of receptor axons targeted to ordinary and sexually dimorphic glomeruli may be correlated with differences in function or connectivity in different regions of the antennal lobe.


Assuntos
Encéfalo/crescimento & desenvolvimento , Glicoproteínas/metabolismo , Manduca/crescimento & desenvolvimento , Condutos Olfatórios/crescimento & desenvolvimento , Caracteres Sexuais , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Encéfalo/citologia , Encéfalo/metabolismo , Diferenciação Celular/fisiologia , Membrana Celular/metabolismo , Feminino , Glicoesfingolipídeos/metabolismo , Glicosilação , Lectinas/metabolismo , Masculino , Manduca/citologia , Manduca/metabolismo , Vias Neurais/citologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/metabolismo , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/metabolismo , Ligação Proteica/fisiologia
11.
Prog Neurobiol ; 73(2): 73-105, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15201035

RESUMO

Olfactory systems serve as excellent model systems for the study of numerous widespread aspects of neural development and also for the elucidation of features peculiar to the formation of neural circuits specialized to process odor inputs. Accumulated research reveals a fine balance between developmental autonomy of olfactory structures and intercellular interactions essential for their normal development. Recent findings have uncovered evidence for more autonomy than previously realized, but simultaneously have begun to reveal the complex cellular and molecular underpinnings of key interactions among neurons and glial cells at several important steps in olfactory development. Striking similarities in the functional organization of olfactory systems across vertebrate and invertebrate species allow the advantages of different species to be used to address common issues. Our own work in the moth Manduca sexta has demonstrated reciprocal neuron-glia interactions that have key importance in two aspects of development, the sorting of olfactory receptor axons into fascicles targeted for specific glomeruli and the creation of glomeruli. Studies in vertebrate species suggest that similar neuron-glia interactions may underlie olfactory development, although here the roles have not been tested so directly. Similar cellular interactions also are likely to play roles in development of some other systems in which axons of intermixed neurons must sort according to target specificity and systems in which reiterated modules of synaptic neuropil develop.


Assuntos
Comunicação Celular , Neuroglia/fisiologia , Neurônios/fisiologia , Condutos Olfatórios/embriologia , Condutos Olfatórios/crescimento & desenvolvimento , Envelhecimento/fisiologia , Animais , Desenvolvimento Embrionário e Fetal , Condutos Olfatórios/citologia
12.
J Comp Neurol ; 472(4): 478-95, 2004 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-15065121

RESUMO

During development, the axons of olfactory receptor neurons project to the CNS and converge on glomerular targets. For vertebrate and invertebrate olfactory systems, neuron-glia interactions have been hypothesized to regulate the sorting and targeting of olfactory receptor axons and the development of glomeruli. In the moth Manduca sexta, glial reduction experiments have directly implicated two types of central olfactory glia, the sorting zone- and neuropil-associated glia, in key events in olfactory development, including axon sorting and glomerulus stabilization. By using cocultures containing central olfactory glial cells and explants of olfactory receptor epithelium, we show that olfactory receptor growth cones elaborate extensively and cease advancement following contact with sorting zone- and neuropil-associated glial cells. These effects on growth cone behavior were specific to central olfactory glia; peripheral glial cells of the olfactory nerve failed to elicit similar responses in olfactory receptor growth cones. We propose that sorting zone- and neuropil-associated glial cells similarly modify axon behavior in vitro by altering the adhesive properties and cytoskeleton of olfactory receptor growth cones and that these in vitro changes may underlie functionally relevant changes in growth cone behavior in vivo.


Assuntos
Axônios/fisiologia , Cones de Crescimento/fisiologia , Manduca/fisiologia , Neuroglia/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Animais , Comunicação Celular/fisiologia , Técnicas de Cocultura , Corantes , Meios de Cultura , Citoesqueleto/fisiologia , Citoesqueleto/ultraestrutura , Imuno-Histoquímica , Microscopia Confocal , Faloidina , Órgãos dos Sentidos/citologia , Cloreto de Sódio
13.
Dev Biol ; 260(1): 9-30, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12885552

RESUMO

In olfactory systems, neuron-glia interactions have been implicated in the growth and guidance of olfactory receptor axons. In the moth Manduca sexta, developing olfactory receptor axons encounter several types of glia as they grow into the brain. Antennal nerve glia are born in the periphery and enwrap bundles of olfactory receptor axons in the antennal nerve. Although their peripheral origin and relationship with axon bundles suggest that they share features with mammalian olfactory ensheathing cells, the developmental roles of antennal nerve glia remain elusive. When cocultured with antennal nerve glial cells, olfactory receptor growth cones readily advance along glial processes without displaying prolonged changes in morphology. In turn, olfactory receptor axons induce antennal nerve glial cells to form multicellular arrays through proliferation and process extension. In contrast to antennal nerve glia, centrally derived glial cells from the axon sorting zone and antennal lobe never form arrays in vitro, and growth-cone glial-cell encounters with these cells halt axon elongation and cause permanent elaborations in growth cone morphology. We propose that antennal nerve glia play roles similar to olfactory ensheathing cells in supporting axon elongation, yet differ in their capacity to influence axon guidance, sorting, and targeting, roles that could be played by central olfactory glia in Manduca.


Assuntos
Manduca/crescimento & desenvolvimento , Neuroglia/metabolismo , Nervo Olfatório/citologia , Neurônios Receptores Olfatórios/metabolismo , Actinas/metabolismo , Animais , Axônios/metabolismo , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados , Cones de Crescimento/metabolismo , Cinética , Manduca/citologia , Microtúbulos/metabolismo , Modelos Biológicos , Neuroglia/citologia , Nervo Olfatório/crescimento & desenvolvimento , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/crescimento & desenvolvimento
14.
Annu Rev Entomol ; 48: 89-110, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12194908

RESUMO

Nervous system function is entirely dependent on the intricate and precise pattern of connections made by individual neurons. Much of the insightful research into mechanisms underlying the development of this pattern of connections has been done in insect nervous systems. Studies of developmental mechanisms have revealed critical interactions between neurons and glia, the non-neuronal cells of the nervous system. Glial cells provide trophic support for neurons, act as struts for migrating neurons and growing axons, form boundaries that restrict neuritic growth, and have reciprocal interactions with neurons that govern specification of cell fate and axonal pathfinding. The molecular mechanisms underlying these interactions are beginning to be understood. Because many of the cellular and molecular mechanisms underlying neural development appear to be common across disparate insect species, and even between insects and vertebrates, studies in developing insect nervous systems are elucidating mechanisms likely to be of broad significance.


Assuntos
Insetos/crescimento & desenvolvimento , Sistema Nervoso/crescimento & desenvolvimento , Animais , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Comunicação Celular , Insetos/embriologia , Insetos/fisiologia , Sistema Nervoso/citologia , Sistema Nervoso/embriologia , Neuroglia/fisiologia , Neurônios/fisiologia , Lobo Óptico de Animais não Mamíferos/citologia , Lobo Óptico de Animais não Mamíferos/embriologia , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Nervos Periféricos/citologia , Nervos Periféricos/embriologia , Nervos Periféricos/crescimento & desenvolvimento , Órgãos dos Sentidos/embriologia , Órgãos dos Sentidos/crescimento & desenvolvimento , Órgãos dos Sentidos/inervação
15.
J Neurobiol ; 52(2): 85-98, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12124748

RESUMO

Changes in the intracellular Ca(2+) concentration ([Ca(2+)](i)) induced by depolarization have been measured in glial cells acutely isolated from antennal lobes of the moth Manduca sexta at different postembryonic developmental stages. Depolarization of the glial cell membrane was elicited by increasing the external K(+) concentration from 4 to 25 mM. At midstage 5 and earlier stages, less than 20% of the cells responded to 25 mM K(+) (1 min) with a transient increase in [Ca(2+)](i) of approximately 40 nM. One day later, at late stage 5, 68% of the cells responded to 25 mM K(+), the amplitude of the [Ca(2+)](i) transients averaging 592 nM. At later stages, all cells responded to 25 mM K(+) with [Ca(2+)](i) transients with amplitudes not significantly different from those at late stage 5. In stage 6 glial cells isolated from deafferented antennal lobes, i.e., from antennal lobes chronically deprived of olfactory receptor axons, only 30% of the cells responded with [Ca(2+)](i) transients. The amplitudes of these [Ca(2+)](i) transients averaged 93 nM and were significantly smaller than those in normal stage 6 glial cells. [Ca(2+)](i) transients were greatly reduced in Ca(2+)-free, EGTA-buffered saline, and in the presence of the Ca(2+) channel blockers cadmium and verapamil. The results suggest that depolarization of the cell membrane induces Ca(2+) influx through voltage-activated Ca(2+) channels into antennal lobe glial cells. The development of the depolarization-induced Ca(2+) transients is rapid between midstage 5 and stage 6, and depends on the presence of afferent axons from the olfactory receptor cells in the antenna.


Assuntos
Axônios/fisiologia , Cálcio/fisiologia , Neuroglia/fisiologia , Neurônios Aferentes/fisiologia , Animais , Canais de Cálcio/fisiologia , Comunicação Celular/fisiologia , Denervação , Eletrofisiologia , Corantes Fluorescentes , Fura-2 , Manduca , Potenciais da Membrana/fisiologia , Neurônios Aferentes/ultraestrutura
16.
J Neurophysiol ; 87(4): 1712-22, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11929893

RESUMO

In many species, including vertebrates and invertebrates, first-order olfactory neuropils are organized into spherical glomeruli, partially enveloped by glial borders. The effect of this characteristic organization on olfactory information processing is poorly understood. The extracellular concentration of potassium ions ([K(+)]) must rise around olfactory receptor axons in specific glomeruli following odor-induced activation. To explore the time course and magnitude of K(+) accumulation and possible effects of such accumulation on neural activity within and among glomeruli, we developed a theoretical model to simulate the diffusion of K(+) in extracellular spaces of the glomeruli of the moth Manduca sexta. K(+) released by activated axons was assumed to diffuse through the extracellular spaces in glomeruli and the glial borders that surround them. The time-dependent diffusion equations were solved in spherical coordinates using a finite-difference method. The results indicate that the glial envelope forms a significant barrier to the spread of K(+) between neighboring glomeruli, thus reducing the likelihood of cross-talk between glomeruli, and may cause elevation of extracellular [K(+)] to levels that influence neural activity within the activated glomerulus for many seconds. Such effects could enhance olfactory discrimination and sensitivity, respectively.


Assuntos
Espaço Extracelular/metabolismo , Modelos Neurológicos , Neuroglia/fisiologia , Condutos Olfatórios/metabolismo , Potássio/metabolismo , Animais , Simulação por Computador , Difusão , Manduca/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...