Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 16(8): 792-803, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25064736

RESUMO

Chromosome breakage elicits transient silencing of ribosomal RNA synthesis, but the mechanisms involved remained elusive. Here we discover an in trans signalling mechanism that triggers pan-nuclear silencing of rRNA transcription in response to DNA damage. This is associated with transient recruitment of the Nijmegen breakage syndrome protein 1 (NBS1), a central regulator of DNA damage responses, into the nucleoli. We further identify TCOF1 (also known as Treacle), a nucleolar factor implicated in ribosome biogenesis and mutated in Treacher Collins syndrome, as an interaction partner of NBS1, and demonstrate that NBS1 translocation and accumulation in the nucleoli is Treacle dependent. Finally, we provide evidence that Treacle-mediated NBS1 recruitment into the nucleoli regulates rRNA silencing in trans in the presence of distant chromosome breaks.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/genética , Dano ao DNA/fisiologia , Proteínas Nucleares/metabolismo , RNA Ribossômico/genética , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Linhagem Celular , Nucléolo Celular/metabolismo , Sequência Conservada , Quebras de DNA de Cadeia Dupla , Inativação Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase I/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transcrição Gênica
2.
Nat Struct Mol Biol ; 18(12): 1331-1335, 2011 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-22120667

RESUMO

Oncogene-induced replicative stress activates an Atr- and Chk1-dependent response, which has been proposed to be widespread in tumors. We explored whether the presence of replicative stress could be exploited for the selective elimination of cancer cells. To this end, we evaluated the impact of targeting the replicative stress-response on cancer development. In mice (Mus musculus), the reduced levels of Atr found on a mouse model of the Atr-Seckel syndrome completely prevented the development of Myc-induced lymphomas or pancreatic tumors, both of which showed abundant levels of replicative stress. Moreover, Chk1 inhibitors were highly effective in killing Myc-driven lymphomas. By contrast, pancreatic adenocarcinomas initiated by K-Ras(G12V) showed no detectable evidence of replicative stress and were nonresponsive to this therapy. Besides its impact on cancer, Myc overexpression aggravated the phenotypes of Atr-Seckel mice, revealing that oncogenes can modulate the severity of replicative stress-associated diseases.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/fisiologia , Estresse Fisiológico , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Antineoplásicos/uso terapêutico , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia , Quinase 1 do Ponto de Checagem , Dano ao DNA , Linfoma/tratamento farmacológico , Linfoma/genética , Linfoma/patologia , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/metabolismo , Proteínas Quinases/fisiologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
4.
Mol Oncol ; 5(4): 368-73, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21820372

RESUMO

Trying to kill cancer cells by generating DNA damage is by no means a new idea. Radiotherapy and genotoxic drugs are routinely used in cancer therapy. More recent developments also explored the potential of targeting the DNA damage response (DDR) in order to increase the toxicity of radio- and chemo- therapy. Chk1 inhibitors have pioneered studies in this regard. Interestingly, early studies noted that Chk1 inhibitors were particularly toxic for p53-deficient cells. The model proposed for this observation was that this effect was due to the simultaneous abrogation of the G2 (Chk1) and G1 (p53) checkpoints. We here challenge this view, and propose a model where the toxicity of Chk1 inhibitors is rather due to the fact that these compounds generate high loads of replicative stress (RS) during S-phase, which are further boosted by the less restrictive S-phase entry found in p53-deficient cells. This new model implies that the particular toxicity of Chk1 inhibitors might not be restricted to p53-deficient cells, but could be extended to other mutations that promote a promiscuous S-phase entry. In addition, this rationale also implies that the same effect should also be observed for other molecules that target the RS-response (RSR), such as inhibitors of the Chk1-activating kinase ATR.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Quinase 1 do Ponto de Checagem , Quebras de DNA de Cadeia Dupla , Inibidores Enzimáticos/uso terapêutico , Humanos , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
5.
Nat Struct Mol Biol ; 18(6): 721-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21552262

RESUMO

Oncogene activation has been shown to generate replication-born DNA damage, also known as replicative stress. The primary responder to replicative stress is not Ataxia-Telangiectasia Mutated (ATM) but rather the kinase ATM and Rad3-related (ATR). One limitation for the study of ATR is the lack of potent inhibitors. We here describe a cell-based screening strategy that has allowed us to identify compounds with ATR inhibitory activity in the nanomolar range. Pharmacological inhibition of ATR generates replicative stress, leading to chromosomal breakage in the presence of conditions that stall replication forks. Moreover, ATR inhibition is particularly toxic for p53-deficient cells, this toxicity being exacerbated by replicative stress-generating conditions such as the overexpression of cyclin E. Notably, one of the compounds we identified is NVP-BEZ235, a dual phosphatidylinositol-3-OH kinase (PI3K) and mTOR inhibitor that is being tested for cancer chemotherapy but that we now show is also very potent against ATM, ATR and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs).


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Antineoplásicos/isolamento & purificação , Proteínas Mutadas de Ataxia Telangiectasia , Sobrevivência Celular , Células Cultivadas , Quebra Cromossômica/efeitos dos fármacos , Inibidores Enzimáticos/isolamento & purificação , Imidazóis/isolamento & purificação , Imidazóis/farmacologia , Camundongos , Oxazinas/isolamento & purificação , Oxazinas/farmacologia , Quinolinas/isolamento & purificação , Quinolinas/farmacologia , Proteína Supressora de Tumor p53/deficiência
6.
Genes Dev ; 22(3): 297-302, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18245444

RESUMO

The ATR kinase is a key transducer of "replicative stress," the type of genomic damage that has been postulated to be induced by oncogenes. Here we describe a cellular system in which we can unleash ATR activity at will, in the absence of any actual damage or additional signaling pathways triggered by DNA breaks. We demonstrate that activating ATR is sufficient to promote cell cycle arrest and, if persistent, triggers p53-dependent but Ink4a/ARF-independent senescence. Moreover, we show that an ectopic activation of ATR leads to a G1/S arrest in ATM-/- cells, providing the first evidence of functional complementation of ATM deficiency by ATR. Our system provides a novel platform for the study of the specific functions of ATR signaling and adds evidence for the tumor-suppressive potential of the DNA damage response.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Senescência Celular/fisiologia , Quebras de DNA , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Transformada , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Proteínas Supressoras de Tumor/metabolismo
7.
J Exp Med ; 203(2): 297-303, 2006 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-16461339

RESUMO

DNA double-strand breaks (DSBs) are among the most deleterious lesions that can challenge genomic integrity. Concomitant to the repair of the breaks, a rapid signaling cascade must be coordinated at the lesion site that leads to the activation of cell cycle checkpoints and/or apoptosis. In this context, ataxia telangiectasia mutated (ATM) and ATM and Rad-3-related (ATR) protein kinases are the earliest signaling molecules that are known to initiate the transduction cascade at damage sites. The current model places ATM and ATR in separate molecular routes that orchestrate distinct pathways of the checkpoint responses. Whereas ATM signals DSBs arising from ionizing radiation (IR) through a Chk2-dependent pathway, ATR is activated in a variety of replication-linked DSBs and leads to activation of the checkpoints in a Chk1 kinase-dependent manner. However, activation of the G2/M checkpoint in response to IR escapes this accepted paradigm because it is dependent on both ATM and ATR but independent of Chk2. Our data provides an explanation for this observation and places ATM activity upstream of ATR recruitment to IR-damaged chromatin. These data provide experimental evidence of an active cross talk between ATM and ATR signaling pathways in response to DNA damage.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Cromatina/metabolismo , Quebra Cromossômica/genética , Dano ao DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Ataxia Telangiectasia/enzimologia , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/patologia , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular/efeitos da radiação , Linhagem Celular Transformada , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Replicação do DNA/efeitos da radiação , Citometria de Fluxo , Raios gama , Humanos , Fosforilação/efeitos da radiação , Proteínas Quinases/fisiologia , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...