Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 167(4): 1402-11, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25670815

RESUMO

Despite the rhizotoxicity of aluminum (Al) being identified over 100 years ago, there is still no consensus regarding the mechanisms whereby root elongation rate is initially reduced in the approximately 40% of arable soils worldwide that are acidic. We used high-resolution kinematic analyses, molecular biology, rheology, and advanced imaging techniques to examine soybean (Glycine max) roots exposed to Al. Using this multidisciplinary approach, we have conclusively shown that the primary lesion of Al is apoplastic. In particular, it was found that 75 µm Al reduced root growth after only 5 min (or 30 min at 30 µm Al), with Al being toxic by binding to the walls of outer cells, which directly inhibited their loosening in the elongation zone. An alteration in the biosynthesis and distribution of ethylene and auxin was a second, slower effect, causing both a transient decrease in the rate of cell elongation after 1.5 h but also a longer term gradual reduction in the length of the elongation zone. These findings show the importance of focusing on traits related to cell wall composition as well as mechanisms involved in wall loosening to overcome the deleterious effects of soluble Al.


Assuntos
Alumínio/metabolismo , Glycine max/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Alumínio/toxicidade , Transporte Biológico , Parede Celular/metabolismo , Etilenos/metabolismo , Genes Reporter , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/citologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Glycine max/citologia , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento
2.
J Plant Physiol ; 172: 128-36, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25240795

RESUMO

Much of modern agriculture is based on immense populations of genetically identical or near-identical varieties, called cultivars. However, advancement of knowledge, and thus experimental utility, is found through biodiversity, whether naturally-found or induced by the experimenter. Globally we are confronted by ever-growing food and energy challenges. Here we demonstrate how such biodiversity from the food legume crop soybean (Glycine max L. Merr) and the bioenergy legume tree Pongamia (Millettia) pinnata is a great value. Legume plants are diverse and are represented by over 18,000 species on this planet. Some, such as soybean, pea and medics are used as food and animal feed crops. Others serve as ornamental (e.g., wisteria), timber (e.g., acacia/wattle) or biofuel (e.g., Pongamia pinnata) resources. Most legumes develop root organs (nodules) after microsymbiont induction that serve as their habitat for biological nitrogen fixation. Through this, nitrogen fertiliser demand is reduced by the efficient symbiosis between soil Rhizobium-type bacteria and the appropriate legume partner. Mechanistic research into the genetics, biochemistry and physiology of legumes is thus strategically essential for future global agriculture. Here we demonstrate how molecular plant science analysis of the genetics of an established food crop (soybean) and an emerging biofuel P. pinnata feedstock contributes to their utility by sustainable production aided by symbiotic nitrogen fixation.


Assuntos
Agricultura , Biocombustíveis , Glycine max/genética , Millettia/genética , Fixação de Nitrogênio , Biodiversidade , Variação Genética , Millettia/metabolismo , Millettia/microbiologia , Glycine max/metabolismo , Glycine max/microbiologia , Simbiose
3.
J Comp Neurol ; 519(10): 2043-59, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21452226

RESUMO

FMRFamide-related peptides (FaRPs) are involved in numerous neural functions across the animal kingdom and serve as important models for understanding the evolution of neuropeptides. Gastropod molluscs have proved to be particularly useful foci for such studies, but the developmental expression of FaRPs and the evolution of specific transcripts for different peptides are unclear within the molluscs. Here we show that FaRPs are encoded by two transcripts that appear to be splice variants of a single gene in the abalone, Haliotis asinina, which represents the basal vetigastropods. Has-FMRF1 comprises 1,438 nucleotides and encodes a precursor protein of 329 amino acids that can potentially produce two copies of FLRFamide, one copy each of TLAGDSFLRFamide, QFYRIamide, SDPDLDDVIRASLLAYSLDDSPNN, and SVATAPVEAKAVEAGNKDIE, and 13 copies of FMRFamide. The second 1,241-nucleotide transcript, Has-FMRF2, encodes a 206-amino acid precursor protein with single copies of FLRFamide and FMRFamide along with such extended forms as NFGEPFLRFamide, FDSYEDKALRFamide, and NGWLHFamide, in addition to SDPGEDMLKSILLRGAPSNNGLQY and DTUDETTUNDNAHSRQ. Both transcripts are present early in life and are expressed in different but overlapping patterns within the developing larval nervous system. Mass spectrometry and immunocytochemistry demonstrate that FaRPs are cleaved from larger precursors and localize to the developing nervous system. Our results confirm previous evidence that FaRPs are expressed early and potentially play many roles during molluscan development and suggest that the last common ancestor to living gastropods used alternative splicing of an FMRFamide gene to generate a diversity of FaRPs in spatially restricted patterns in the nervous system.


Assuntos
FMRFamida/genética , FMRFamida/metabolismo , Gastrópodes/crescimento & desenvolvimento , Gastrópodes/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , FMRFamida/classificação , Gastrópodes/anatomia & histologia , Gastrópodes/genética , Dados de Sequência Molecular , Filogenia , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
J Exp Zool B Mol Dev Evol ; 314(4): 267-79, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20095031

RESUMO

Members of the Vasa and Nanos gene families are important for the specification and development of the germline in diverse animals. Here, we determine spatial and temporal expression of Vasa and Nanos to investigate germline development in the vetigastropod Haliotis asinina. This is the first time these genes have been examined in an equally cleaving lophotrochozoan species. We find that HasVasa and HasNanos have largely overlapping, but not identical, expression patterns during embryonic and larval development, with both being maternally expressed and localized to the micromere cell lineages during cleavage. As embryonic development continues, HasVasa and HasNanos become progressively more enriched in the dorsal quadrant of the embryo. By the trochophore stage, both HasVasa and HasNanos are expressed in the putative mesodermal bands of the larva. This differs from the unequally cleaving gastropod Illyanasa obsoleta, in which IoVasa and IoNanos expression is detectable only in the early embryo and not during gastrulation and larval development. Our results suggest that the H. asinina germline arises from the 4d cell lineage and that primordial germ cells (PGCs) are not specified exclusively by maternally inherited determinants (preformation). As such, we infer that inductive signals (epigenesis) play an important role in specifying PGCs in H. asinina. We hypothesize that HasVasa is expressed in a population of undifferentiated multipotent cells, from which the PGCs are segregated later during development.


Assuntos
Linhagem da Célula/fisiologia , Gastrópodes/embriologia , Gastrópodes/fisiologia , Sequência de Aminoácidos , Animais , Padronização Corporal , Clonagem Molecular , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Larva/fisiologia , Dados de Sequência Molecular
5.
Mol Biol Evol ; 26(8): 1851-64, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19414522

RESUMO

Carotenoids are commonly used by disparate metazoans to produce external coloration, often in direct association with specific proteins. In one such example, crustacyanin (CRCN) and the carotenoid astaxanthin combine to form a multimeric protein complex that is critical for the array of external shell colors in clawed lobsters. Through a combined biochemical, molecular genetic, and bioinformatic survey of the distribution of CRCN across the animal kingdom, we have found that CRCNs are restricted to, but widespread among, malacostracan crustaceans. These crustacean-specific genes separate into two distinct clades within the lipocalin protein superfamily. We show that CRCN differentially localizes to colored shell territories and the underlying epithelium in panulirid lobsters. Given the paramount importance of CRCN in crustacean shell colors and patterns and the critical role these play in survival, reproduction, and communication, we submit that the origin of the CRCN gene family early in the evolution of malacostracan crustaceans significantly contributed to the success of this group of arthropods.


Assuntos
Evolução Molecular , Palinuridae/química , Palinuridae/genética , Proteínas/genética , Animais , Carotenoides/metabolismo , Palinuridae/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...