Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 27(12): 1929-1936, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27734325

RESUMO

We provide the initial performance evaluation of a 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer operating at the Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory. The spectrometer constructed for the 21T system employs a commercial dual linear ion trap mass spectrometer coupled to a FTICR spectrometer designed and built in-house. Performance gains from moving to higher magnetic field strength are exemplified by the measurement of peptide isotopic fine structure, complex natural organic matter mixtures, and large proteins. Accurate determination of isotopic fine structure was demonstrated for doubly charged Substance P with minimal spectral averaging, and 8158 molecular formulas assigned to Suwannee River Fulvic Acid standard with root-mean-square (RMS) error of 10 ppb. We also demonstrated superior performance for intact proteins; namely, broadband isotopic resolution of the entire charge state distribution of apo-transferrin (78 kDa) and facile isotopic resolution of monoclonal antibody under a variety of acquisition parameters (e.g., 6 s time-domains with absorption mode processing yielded resolution of approximately 1 M at m/z = 2700). Graphical Abstract ᅟ.

2.
Anal Chem ; 88(18): 8949-8956, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27479234

RESUMO

We report on ion mobility (IM) separations achievable using traveling waves (TW) in a Structures for Lossless Ion Manipulations (SLIM) module having a 44 cm path length and 16 90° turns. The performance of the TW-SLIM module was evaluated for ion transmission and IM separations with different RF, TW parameters, and SLIM surface gaps in conjunction with mass spectrometry. In this work, TWs were created by the transient and dynamic application of DC potentials. The module demonstrated highly robust performance and, even with 16 closely spaced turns, achieving IM resolution performance and ion transmission comparable to a similar straight path module. We found an IM peak capacity of ∼31 and peak generation rate of 780 s(-1) for TW speeds of ∼80 m/s using the current multi-turn TW-SLIM module. The separations achieved for isomers of peptides and tetrasaccharides were found to be comparable to those from a ∼0.9-m drift tube-based IM-MS platform operated at the same pressure (4 Torr). The combined attributes of flexible design, low voltage requirements and lossless ion transmission through multiple turns for the present TW-SLIM module provides a basis for SLIM devices capable of achieving much greater IM resolution via greatly extended ion path lengths and using compact serpentine designs.


Assuntos
Espectrometria de Massas/métodos , Peptídeos/análise , Algoritmos , Sequência de Aminoácidos , Bradicinina/análise , Desenho de Equipamento , Íons/química
3.
Anal Chem ; 88(18): 8957-64, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27531027

RESUMO

We report the development and initial evaluation of a 13 m path length Structures for Lossless Manipulations (SLIM) module for achieving high resolution separations using traveling waves (TW) with ion mobility (IM) spectrometry. The TW SLIM module was fabricated using two mirror-image printed circuit boards with appropriately configured RF, DC, and TW electrodes and positioned with a 2.75 mm intersurface gap. Ions were effectively confined in field-generated conduits between the surfaces by RF-generated pseudopotential fields and moved losslessly through a serpentine path including 44 "U" turns using TWs. The ion mobility resolution was characterized at different pressures, gaps between the SLIM surfaces, and TW and RF parameters. After initial optimization, the SLIM IM-MS module provided about 5-fold higher resolution separations than present commercially available drift tube or traveling wave IM-MS platforms. Peak capacity and peak generation rates achieved were 246 and 370 s(-1), respectively, at a TW speed of 148 m/s. The high resolution achieved in the TW SLIM IM-MS enabled, e.g., isomeric sugars (lacto-N-fucopentaose I and lacto-N-fucopentaose II) to be baseline resolved, and peptides from an albumin tryptic digest were much better resolved than with existing commercial IM-MS platforms. The present work also provides a foundation for the development of much higher resolution SLIM devices based upon both considerably longer path lengths and multipass designs.


Assuntos
Espectrometria de Massas/métodos , Oligossacarídeos/química , Soroalbumina Bovina/química , Animais , Bovinos , Eletrodos , Fenômenos Eletromagnéticos , Desenho de Equipamento , Íons/análise , Isomerismo , Espectrometria de Massas/instrumentação , Oligossacarídeos/análise , Peptídeos/análise
4.
J Am Soc Mass Spectrom ; 27(6): 1128-35, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27052738

RESUMO

A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of a linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets (i.e., peaks) in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression (i.e., a reduction in peak widths for all species). This peak compression occurs with only a modest reduction of resolution, which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. Ion mobility peak compression can be particularly useful for mitigating diffusion-driven peak broadening over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range. Graphical Abstract ᅟ.


Assuntos
Espectrometria de Mobilidade Iônica , Íons , Pressão
5.
Anal Chem ; 88(3): 1728-33, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26752262

RESUMO

The integration of ion mobility spectrometry (IMS) with mass spectrometry (MS) and the ability to trap ions in IMS-MS measurements is of great importance for performing reactions, accumulating ions, and increasing analytical measurement sensitivity. The development of Structures for Lossless Ion Manipulations (SLIM) offers the potential for ion manipulations in an extended and more effective manner, while opening opportunities for many more complex sequences of manipulations. Here, we demonstrate an ion separation and trapping module and a method based upon SLIM that consists of a linear mobility ion drift region, a switch/tee and a trapping region that allows the isolation and accumulation of mobility-separated species. The operation and optimization of the SLIM switch/tee and trap are described and demonstrated for the enrichment of the low abundance ions. A linear improvement in ion intensity was observed with the number of trapping/accumulation events using the SLIM trap, illustrating its potential for enhancing the sensitivity of low abundance or targeted species.


Assuntos
Espectrometria de Massas/métodos , Peptídeos/análise , Humanos , Íons/química , Conformação Proteica
6.
ChemistrySelect ; 1(10): 2396-2399, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28936476

RESUMO

Mass spectrometry (MS)-based multi-omic measurements, including proteomics, metabolomics, lipidomics, and glycomics, are increasingly transforming our ability to characterize and understand biological systems. Multi-omic analyses and the desire for comprehensive measurement coverage presently have limitations due to the chemical diversity and range of abundances of biomolecules in complex samples. Advances addressing these challenges increasingly are based upon the ability to quickly separate, react and otherwise manipulate sample components for analysis by MS. Here we report on a new approach using Structures for Lossless Ion Manipulations (SLIM) to enable long serpentine path ion mobility spectrometry (IMS) separations followed by MS analyses. This approach provides previously unachieved resolution for biomolecular species, in conjunction with more effective ion utilization, and a basis for greatly improved characterization of very small sample sizes.

7.
Anal Chem ; 87(22): 11301-8, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26510005

RESUMO

We report on the development and characterization of a traveling wave (TW)-based Structures for Lossless Ion Manipulations (TW-SLIM) module for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters are reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200-2500) utilizing a confining rf waveform (∼1 MHz and ∼300 Vp-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ∼32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. The combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.


Assuntos
Íons/isolamento & purificação , Eletrodos , Íons/química , Ondas de Rádio , Propriedades de Superfície
8.
Analyst ; 140(20): 6845-52, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26289106

RESUMO

The process of redirecting ions through 90° turns and 'tee' switches utilizing Structures for Lossless Ion Manipulations (SLIM) was evaluated at 4 Torr pressure using SIMION simulations and theoretical methods. The nature of pseudo-potential in SLIM-tee structures has also been explored. Simulations show that 100% transmission efficiency in SLIM devices can be achieved with guard electrode voltages lower than ∼10 V. The ion plume width in these conditions is ∼1.6 mm while at lower guard voltages lead to greater plume widths. Theoretical calculations show marginal loss of ion mobility resolving power (<5%) during ion turn due to the finite plume widths (i.e. race track effect). More robust SLIM designs that reduce the race track effect while maximizing ion transmission are also reported. In addition to static turns, the dynamic switching of ions into orthogonal channels was also evaluated both using SIMION ion trajectory simulations and experimentally. Simulations and theoretical calculations were in close agreement with experimental results and were used to develop more refined SLIM designs.


Assuntos
Espectrometria de Massas/métodos , Modelos Teóricos , Movimento (Física) , Pressão
9.
Anal Chem ; 87(12): 6010-6, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25971536

RESUMO

A new Structures for Lossless Ion Manipulations (SLIM) module, having electrode arrays patterned on a pair of parallel printed circuit boards (PCB), was constructed and utilized to investigate capabilities for ion trapping at a pressure of 4 Torr. Positive ions were confined by application of RF voltages to a series of inner rung electrodes with alternating phase on adjacent electrodes, in conjunction with positive DC potentials on surrounding guard electrodes on each PCB. An axial DC field was also introduced by stepwise varying the DC potentials applied to the inner rung electrodes to control the ion transport and accumulation inside the ion trapping region. We show that ions can be trapped and accumulated with up to 100% efficiency, stored for at least 5 h with no significant losses, and then could be rapidly ejected from the SLIM trap. The present results provide a foundation for the development of much more complex SLIM devices that facilitate extended ion manipulations.


Assuntos
Espectrometria de Massas/instrumentação , Eletrodos , Íons/análise
10.
J Am Soc Mass Spectrom ; 25(11): 1890-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25257188

RESUMO

We report a conceptual study and computational evaluation of novel planar electrode structures for lossless ion manipulations (SLIM). Planar electrode SLIM components were designed that allow for flexible ion confinement, transport, and storage using a combination of radio frequency (rf) and DC fields. Effective potentials can be generated that provide near ideal regions for confining and manipulating ions in the presence of a gas. Ion trajectory simulations using SIMION 8.1 demonstrated the capability for lossless ion motion in these devices over a wide m/z range and a range of electric fields at low pressures (e.g., a few Torr). More complex ion manipulations (e.g., turning ions by 90(o) and dynamically switching selected ion species into orthogonal channels) are also shown feasible. The performance of SLIM devices at ~4 Torr pressure for performing ion mobility-based separations (IMS) is computationally evaluated and compared with initial experimental results, and both are also shown to agree closely with experimental and theoretical IMS performance for a conventional drift tube design.


Assuntos
Simulação por Computador , Eletrodos , Campos Eletromagnéticos , Desenho de Equipamento , Íons/química , Espectrometria de Massas/instrumentação
11.
Anal Chem ; 86(19): 9632-7, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25222548

RESUMO

A Structures for Lossless Ion Manipulations (SLIM) module that allows ion mobility separations and the switching of ions between alternative drift paths is described. The SLIM switch component has a "Tee" configuration and allows the efficient switching of ions between a linear path and a 90-degree bend. By controlling switching times, ions can be efficiently directed to an alternative channel as a function of their mobilities. In the initial evaluation the switch is used in a static mode and shown compatible with high performance ion mobility separations at 4 Torr. In the dynamic mode, we show that mobility-selected ions can be switched into the alternative channel, and that various ion species can be independently selected based on their mobilities for time-of-flight mass spectrometer (TOF MS) IMS detection and mass analysis. This development also provides the basis of, for example, the selection of specific mobilities for storage and accumulation, and the key component of modules for the assembly of SLIM devices enabling much more complex sequences of ion manipulations.


Assuntos
Espectrometria de Massas/métodos , Estrutura Molecular
12.
Anal Chem ; 86(18): 9169-76, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25152066

RESUMO

We report on the performance of structures for lossless ion manipulation (SLIM) as a means for transmitting ions and performing ion mobility separations (IMS). Ions were successfully transferred from an electrospray ionization (ESI) source to the TOF MS analyzer by means of a linear SLIM, demonstrating lossless ion transmission and an alternative arrangement including a 90° turn. First, the linear geometry was optimized for radial confinement by tuning RF on the central "rung" electrodes and potentials on the DC-only guard electrodes. Selecting an appropriate DC guard bias (2-6 V) and RF amplitude (≥160 V(p-p) at 750 kHz) resulted in the greatest ion intensities. Close to ideal IMS resolving power was maintained over a significant range of applied voltages. Second, the 90° turn was optimized for radial confinement by tuning RF on the rung electrodes and DC on the guard electrodes. However, both resolving power and ion transmission showed a dependence on these voltages, and the best conditions for both were >300 V(p-p) RF (685 kHz) and 7-11 V guard DC bias. Both geometries provide IMS resolving powers at the theoretical limit (R ~ 58), showing that degraded resolution from a "racetrack" effect from turning around a corner can be successfully avoided, and the capability also was maintained for essentially lossless ion transmission.


Assuntos
Espectrometria de Massas por Ionização por Electrospray/instrumentação , Eletricidade , Eletrodos , Íons/química , Ondas de Rádio , Espectrometria de Massas por Ionização por Electrospray/métodos
13.
Anal Chem ; 86(18): 9162-8, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25152178

RESUMO

Structures for Lossless Ion Manipulation (SLIM) represent a novel class of ion optical devices based upon electrodes patterned on planar surfaces, and relying on a combined action of radiofrequency and DC electric fields and specific buffer gas density conditions. Initial experimental studies have demonstrated the feasibility of the SLIM concept. This report offers an in-depth consideration of key ion dynamics properties in such devices based upon ion optics theory and computational modeling. The SLIM devices investigated are formed by two surfaces, each having an array of radiofrequency (RF) "rung" electrodes, bordered by DC "guard" electrodes. Ion motion is confined by the RF effective potential in the direction orthogonal to the boards and limited or controlled in the transversal direction by the guard DC potentials. Ions can be efficiently trapped and stored in SLIM devices where the confinement of ions can be "soft" in regard to the extent of collisional activation, similarly to RF-only multipole ion guides and traps. The segmentation of the RF rung electrodes and guards along the axis makes it possible to apply static or transient electric field profiles to stimulate ion transfer within a SLIM. In the case of a linear DC gradient applied to RF rungs and guards, a virtually uniform electric field can be created along the axis of the device, enabling high quality ion mobility separations.


Assuntos
Espectrometria de Massas/instrumentação , Eletricidade , Eletrodos , Íons/química , Ondas de Rádio
14.
Anal Chem ; 86(11): 5295-9, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24786390

RESUMO

Ion mobility instruments that utilize nitrogen as buffer gas are often preceded by an ion trap and accumulation region that also uses nitrogen, and for different inert gases, no significant effects upon performance are expected for ion mobility spectrometry (IMS) of larger ions. However, we have observed significantly improved performance for an ion funnel trap upon adding helium; the signal intensities for higher m/z species were improved by more than an order of magnitude compared to using pure nitrogen. The effect of helium upon IMS resolving power was also studied by introducing a He/N2 gas mixture into the drift cell, and in some cases, a slight improvement was observed compared to pure N2. The improvement in signal can be largely attributed to faster and more efficient ion ejection into the drift tube from the ion funnel trap.


Assuntos
Hélio/análise , Algoritmos , Soluções Tampão , Íons/química , Espectrometria de Massas , Nitrogênio/química , Hidrolisados de Proteína/química , Soroalbumina Bovina/química
15.
J Am Soc Mass Spectrom ; 23(7): 1169-72, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22565507

RESUMO

A recent publication from this laboratory reported a theoretical analysis comparing approaches for creating harmonic ICR cells. We considered two examples of static segmented cells--namely, a seven segment cell developed in this laboratory and one described by Rempel et al., along with a recently described dynamically harmonized cell by Boldin and Nikolaev. This conceptual design for a dynamically harmonized cell has now been reduced to practice and first experimental results obtained with this cell were recently reported in this journal; this publication reported details of cell construction and described its performance in a 7 tesla Fourier transform mass spectrometer. We describe the extension of theoretical analysis creating harmonic ICR cells to include angular-averaged radial electric field calculations and a discussion of the influence of trapping plates.


Assuntos
Campos Eletromagnéticos , Espectrometria de Massas/instrumentação , Algoritmos , Íons/química
16.
J Proteome Res ; 11(4): 2091-102, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22375802

RESUMO

Induced pluripotent stem cells (iPSC) hold great promise for regenerative medicine as well as for investigations into the pathogenesis and treatment of various diseases. Understanding of key intracellular signaling pathways and protein targets that control development of iPSC from somatic cells is essential for designing new approaches to improve reprogramming efficiency. Here, we report the development and application of an integrated quantitative proteomics platform for investigating differences in protein expressions between mouse embryonic fibroblasts (MEF) and MEF-derived iPSC. This platform consists of 16O/18O labeling, multidimensional peptide separation coupled with tandem mass spectrometry, and data analysis with UNiquant software. With this platform, a total of 2481 proteins were identified and quantified from the 16O/18O-labeled MEF-iPSC proteome mixtures with a false discovery rate of 0.01. Among them, 218 proteins were significantly upregulated, while 247 proteins were significantly downregulated in iPSC compared to MEF. Many nuclear proteins, including Hdac1, Dnmt1, Pcna, Ccnd1, Smarcc1, and subunits in DNA replication and RNA polymerase II complex, were found to be enhanced in iPSC. Protein network analysis revealed that Pcna functions as a hub orchestrating complicated mechanisms including DNA replication, epigenetic inheritance (Dnmt1), and chromatin remodeling (Smarcc1) to reprogram MEF and maintain stemness of iPSC.


Assuntos
Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Marcação por Isótopo/métodos , Proteoma/análise , Proteômica/métodos , Animais , Linhagem Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Camundongos , Isótopos de Oxigênio/análise , Isótopos de Oxigênio/metabolismo , Mapas de Interação de Proteínas , Proteoma/metabolismo
17.
Anal Chem ; 83(24): 9552-6, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22060180

RESUMO

Secondary ion mass spectrometry (SIMS) has seen increased application for high spatial resolution chemical imaging of complex biological surfaces. The advent and commercial availability of cluster and polyatomic primary ion sources (e.g., Au and Bi cluster and buckminsterfullerene (C(60))) provide improved secondary ion yield and decreased fragmentation of surface species, thus improving accessibility of intact molecular ions for SIMS analysis. However, full exploitation of the advantages of these new primary ion sources has been limited, due to the use of low mass resolution mass spectrometers without tandem MS to enable enhanced structural identification capabilities. Similarly, high mass resolution and high mass measurement accuracy would greatly improve the chemical specificity of SIMS. Here we combine, for the first time, the advantages of a C(60) primary ion source with the ultrahigh mass resolving power and high mass measurement accuracy of Fourier transform ion cyclotron resonance mass spectrometry. Mass resolving power in excess of 100 000 (m/Δm(50%)) is demonstrated, with a root-mean-square mass measurement accuracy below 1 part-per-million. Imaging of mouse brain tissue at 40 µm pixel size is shown. Tandem mass spectrometry of ions from biological tissue is demonstrated and molecular formulas were assigned for fragment ion identification.


Assuntos
Fulerenos/química , Espectrometria de Massa de Íon Secundário , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Colesterol/análise , Feminino , Análise de Fourier , Gramicidina/química , Camundongos , Polietilenoglicóis/química
18.
J Am Soc Mass Spectrom ; 22(8): 1334-42, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21953187

RESUMO

Herein, we present the theoretical and experimental study of the recently introduced FTICR cell designs. We developed an approach that determines the electric field inside the cell, based on the measurement of calibration coefficients as a function of post-excitation radius and other conditions. Using the radial electric field divided by radius (E(r)/r) as a criterion of the cell harmonization, we compare the compensated cell approach with alternative designs and discuss practical implications of the cell compensation.


Assuntos
Análise de Fourier , Espectrometria de Massas/instrumentação , Cromatografia Líquida , Ciclotrons , Campos Eletromagnéticos , Espectrometria de Massas/métodos
19.
J Proteome Res ; 10(3): 1228-37, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21158445

RESUMO

Stable isotope labeling (SIL) methods coupled with nanoscale liquid chromatography and high resolution tandem mass spectrometry are increasingly useful for elucidation of the proteome-wide differences between multiple biological samples. Development of more effective programs for the sensitive identification of peptide pairs and accurate measurement of the relative peptide/protein abundance are essential for quantitative proteomic analysis. We developed and evaluated the performance of a new program, termed UNiquant, for analyzing quantitative proteomics data using stable isotope labeling. UNiquant was compared with two other programs, MaxQuant and Mascot Distiller, using SILAC-labeled complex proteome mixtures having either known or unknown heavy/light ratios. For the SILAC-labeled Jeko-1 cell proteome digests with known heavy/light ratios (H/L = 1:1, 1:5, and 1:10), UNiquant quantified a similar number of peptide pairs as MaxQuant for the H/L = 1:1 and 1:5 mixtures. In addition, UNiquant quantified significantly more peptides than MaxQuant and Mascot Distiller in the H/L = 1:10 mixtures. UNiquant accurately measured relative peptide/protein abundance without the need for postmeasurement normalization of peptide ratios, which is required by the other programs.


Assuntos
Marcação por Isótopo/métodos , Peptídeos/análise , Proteínas/análise , Proteômica/métodos , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Humanos , Dados de Sequência Molecular , Peptídeos/genética , Proteínas/genética , Proteoma/análise , Software , Espectrometria de Massas em Tandem/métodos
20.
Anal Chem ; 82(22): 9344-9, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21028835

RESUMO

Inefficient ionization and poor transmission of the charged species produced by an electrospray from the ambient pressure mass spectrometer source into the high vacuum region required for mass analysis significantly limits achievable sensitivity. Here, we present evidence that, when operated at flow rates of 50 nL/min, a new electrospray-based ion source operated at ∼20 Torr can deliver ∼50% of the analyte ions initially in the solution as charged desolvated species into the rough vacuum region of mass spectrometers. The ion source can be tuned to optimize the analyte signal for readily ionized species while reducing the background contribution.


Assuntos
Nanotecnologia/métodos , Pressão , Espectrometria de Massas por Ionização por Electrospray/métodos , Dióxido de Carbono/química , Íons , Nanotecnologia/instrumentação , Solventes/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...